Это невероятно малое расстояние еще не раз появится здесь, в книге. Оно представляет собой основной масштаб расстояний, характеризующий любую квантовую теорию гравитации. Причина этого явления довольно проста. В любой теории гравитации сила гравитационного взаимодействия измеряется с помощью гравитационной постоянной (постоянной Ньютона). Но физики пользуются упрощенной системой единиц, в которой скорость света с принята равной единице. Это означает, что 1 секунда эквивалентна 186 000 миль (297 600 км). Кроме того, постоянная Планка, деленная на 2π, также принята равной единице; таким образом, задаются численные соотношения между секундами и эргами энергии. В этих странных, но удобных единицах все вплоть до постоянной Ньютона можно свести к сантиметрам. Если же вычислить длину, ассоциирующуюся с постоянной Ньютона, мы получим планковскую длину, или 10 -33 см, или 10 19 млрд эВ. Таким образом, все квантовые гравитационные эффекты определяются в сравнении с этим малым расстоянием. В частности, размер незримых высших измерений — планковская длина.
Линда Далримпл Хендерсон «Четвертое измерение и неевклидова геометрия в современном искусстве» (Linda Dalrymple Henderson, The Fourth Dimension and Non-Euclidean Geometry in Modern Art, Princeton, N. J.: Princeton University Press, 1983), c. xix.
Э. Т. Белл «Математики» (E. T. Bell, Men of Mathematics, New York: Simon and Schuster, 1937), c. 484.
Э. Т. Белл «Математики» (E. T. Bell, Men of Mathematics, New York: Simon and Schuster, 1937), c. 487. Скорее всего, именно этот случай пробудил ранний интерес Римана к теории чисел. Много лет спустя он высказал знаменитое предположение касательно содержащей дзета-функцию формулы в теории чисел. За сто лет безуспешных сражений с «римановой гипотезой» величайшие математики мира так и не сумели доказать ее. Даже самые современные компьютеры не справились с этой задачей, и гипотеза Римана вошла в историю как одна из самых известных недоказанных теорем в теории чисел — вероятно, самая знаменитая в математике. Белл отмечает: «Тот, кто докажет или опровергнет ее, несомненно, прославится» (там же, с. 488).
Джон Валлис (Уоллис), Der Barycentrische Calcul, Leipzig, 1827, p. 184.
Хотя Риману обычно приписывают роль движущей творческой силы, в конце концов сокрушившей рамки евклидовой геометрии, по праву человеком, который открыл геометрию высших измерений, должен был стать престарелый наставник Римана, сам Гаусс.
В 1817 г., почти за десять лет до рождения Римана, Гаусс выразил свое глубокое недовольство евклидовой геометрией. В пророческом письме к другу, астроному Генриху Ольберсу, он недвусмысленно заявил, что евклидова геометрия математически несовершенна.
В 1869 г. математик Джеймс Дж. Сильвестр писал, что Гаусс всерьез обдумывал возможность существования многомерных пространств. Гаусс представлял себе свойства существ, названных им «книжными червями», способных жить на двумерных листах бумаги. Затем он распространил свои выводы на «существ, способных представить себе пространство с четырьмя и более измерениями» (процитировано в: Линда Далримпл Хендерсон «Четыре измерения и неевклидова геометрия в современном искусстве» (Linda Dalrymple Henderson, The Fourth Dimension and Non-Euclidean Geometry in Modern Art, Princeton, N. J.: Princeton University Press, 1983), c. 19).
Но если Гаусс сформулировал теорию многомерности, на 40 лет опередив всех, тогда почему же он упустил поистине историческую возможность избавиться от уз трехмерной евклидовой геометрии? Историки отмечают присущую Гауссу консервативность в работе, общественной и личной жизни. Он никогда не покидал пределов Германии и почти всю жизнь провел в одном городе. Это обстоятельство отразилось на его профессиональной деятельности.
В примечательном письме, написанном в 1829 г., Гаусс признавался своему другу Фридриху Бесселю, что никогда не опубликует свою работу, посвященную неевклидовой геометрии, из опасения, что она вызовет споры в кругах «беотийцев». Математик Морис Клайн писал: «Он [Гаусс] заявлял в письме к Бесселю от 27 января 1829 г., что, вероятно, никогда не опубликует результаты своих исследований этого предмета, поскольку опасается насмешек или, как выразился сам Гаусс, боится навлечь недовольство „беотийцев“, образно названных в память о недалеком греческом народе» («Математика и физический мир» (Mathematics and the Physical World, New York: Crowell, 1959, p. 449)). Гаусс так робел перед старой гвардией, узколобыми «беотийцами», свято верившими в три измерения, что предпочел сохранить в тайне лучший из своих трудов.
Читать дальше
Конец ознакомительного отрывка
Купить книгу