Коллектив авторов - Новые идеи в философии. Сборник номер 11

Здесь есть возможность читать онлайн «Коллектив авторов - Новые идеи в философии. Сборник номер 11» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: М.-Берлин, Год выпуска: 2014, ISBN: 2014, Издательство: Array Литагент «Директмедиа», Жанр: Философия, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Новые идеи в философии. Сборник номер 11: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Новые идеи в философии. Сборник номер 11»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Серия «Новые идеи в философии» под редакцией Н.О. Лосского и Э.Л. Радлова впервые вышла в Санкт-Петербурге в издательстве «Образование» ровно сто лет назад – в 1912—1914 гг. За три неполных года свет увидело семнадцать сборников. Среди авторов статей такие известные русские и иностранные ученые как А. Бергсон, Ф. Брентано, В. Вундт, Э. Гартман, У. Джемс, В. Дильтей и др. До настоящего времени сборники являются большой библиографической редкостью и представляют собой огромную познавательную и историческую ценность прежде всего в силу своего содержания. К тому же за сто прошедших лет ни по отдельности, ни, тем более, вместе сборники не публиковались повторно.

Новые идеи в философии. Сборник номер 11 — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Новые идеи в философии. Сборник номер 11», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Так как такой ряд беспределен с обеих сторон, то всякое реальное целое число представляет отношение любого избранного началом члена к определенному члену ряда».

(Простейший образ этого модуса перехода дает перемещение в пространстве. Если я перехожу от А к В и затем обратно от В к А, то общий результат моего относительного перемещения равен нулю. Я могу поэтому сказать: АВ ± ВА = 0).

«Если же предметы таковы, что они не могут быть расположены в один, хотя бы и беспредельный ряд, а могут располагаться только в ряды рядов, или – что то же самое – они образуют многообразие двух измерений; если, далее, с отношениями одного ряда к другому, или с переходами из одного в другой дело обстоит так, как с переходами от одного члена к другому члену того же ряда, то для измерения перехода от одного члена системы к другому нужны, очевидно, кроме прежних единиц + 1 и – 1, еще две другие противоположные друг другу единицы + i и – i. Кроме того, здесь должно еще, очевидно, постулировать, что единица i означает здесь всякий раз переход от одного данного члена ряда к определенному члену непосредственно примыкающего к первому ряда. Таким образом система может быть двояким образом расположена в ряды рядов.

Математик совершенно отвлекается от свойств предметов и содержания их отношений. Его задача ограничивается счетом и взаимным сравнением отношений. На этом основании он не только в праве считать однородными отношения, обозначенные через + 1 и – 1, но в праве распространить эту однородность и на все четыре элемента + 1, – 1, + i и – i.

Наглядно эти соотношения могут быть представлены только в пространстве. Простейший случай тот, в котором нет основания располагать символы предметов иначе, чем в квадрате: при помощи двух систем параллельных линий, перекрещивающихся под прямым углом, разделяют беспредельную плоскость на квадраты и точки пересечения избирают символами. Каждая такая точка А имеет четырех соседей, и если отношение точки А к какой-нибудь соседней точке обозначить через + 1, то тем самым уже определена точка, которую следует обозначить через – 1, между тем как через + i можно обозначить любую из двух других, или через + i можно по произволу обозначить точку справа и слева от точки А. Раз мы твердо (хотя и по произволу) установили, что такое вперед и назад в самой плоскости и что верх и низ относительно обеих сторон плоскости, то различие между правым и левым в себе вполне определено, хотя другим мы можем сообщить наше воззрение этого различия только ссылкой на действительно существующие материальные вещи. Но если мы и относительно последнего пришли к определенному решению, то нетрудно видеть, что все же от нашей воли зависит, какой из двух перекрещивающихся рядов назвать главным рядом и какое направление в нем связывать с положительными числами; далее видно также, что если отношение, которое раньше обозначалось через + i, теперь обозначать через + 1, то приходится отношение, которое раньше обозначалось через – 1, теперь обозначить через + i. На языке математиков это обозначает, что + i есть некоторая средняя пропорциональная величина между + 1 и – 1, что обозначается знаком √ – 1. Мы намеренно говорим «некоторая», потому что и – i тоже, очевидно, есть такая величина. Здесь, следовательно, наглядное значение √ – 1 вполне доказуемо, а больше ничего и не требуется, чтобы допустить эту величину в область предметов арифметики 8.

Если бы мы + 1, – 1, √ – 1 называли не положительной, отрицательной, мнимой (или даже невозможной) единицей, а, допустим, прямой, обратной, латеральной (боковой) единицей, то вряд ли могла бы быть речь о такой темноте».

К чему же сводится руководящая методологическая идея, лежащая в основе всех этих великих мыслей? Она может быть выражена, мне кажется, в виде следующего вопроса: из каких элементов состоящим мы должны считать данное образование для того, чтобы форма, в которой оно мыслилось бы возможным, т. е. чтобы его понятие соответствовало общей закономерности нашего мышления? Или: как результат каких действующих друг на друга факторов должен рассматриваться данный продукт, чтобы быть логически понятным? – Многие явления нашей жизни, носящие характер рядов, понимаются по аналогии с положительными и отрицательными числами. Правое – левое, верх – низ, прошлое – будущее – все это ряды, в которых, остановившись на одной определенной точке, мышление может направляться только по двум прямо противоположным друг другу и потому в результате компенсирующим друг друга направлениям.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Новые идеи в философии. Сборник номер 11»

Представляем Вашему вниманию похожие книги на «Новые идеи в философии. Сборник номер 11» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Коллектив авторов - Новые штрафы РФ 2013
Коллектив авторов
Коллектив авторов - Новые марсианские хроники
Коллектив авторов
Коллектив авторов - Понятия, идеи, конструкции
Коллектив авторов
Array Коллектив авторов - Новые имена в литературе
Array Коллектив авторов
Отзывы о книге «Новые идеи в философии. Сборник номер 11»

Обсуждение, отзывы о книге «Новые идеи в философии. Сборник номер 11» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x