Ян Лукасевич - О принципе противоречия у Аристотеля. Критическое исследование

Здесь есть возможность читать онлайн «Ян Лукасевич - О принципе противоречия у Аристотеля. Критическое исследование» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Санкт-Петербург, Год выпуска: 2012, ISBN: 2012, Издательство: Литагент ЦГИ, Жанр: Философия, Философия, Философия, foreign_edu, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

О принципе противоречия у Аристотеля. Критическое исследование: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «О принципе противоречия у Аристотеля. Критическое исследование»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Книга выдающегося польского логика и философа Яна Лукасевича (1878-1956), опубликованная в 1910 г., уже к концу XX века привлекла к себе настолько большое внимание, что ее начали переводить на многие европейские языки. Теперь пришла очередь русского издания. В этой книге впервые в мире подвергнут обстоятельной критике принцип противоречия, защищаемый Аристотелем в «Метафизике». В данное издание включены четыре статьи Лукасевича и среди них новый перевод знаменитой статьи «О детерминизме». Книга также снабжена биографией Яна Лукасевича и вступительной статьей, показывающей мучительную внутреннюю борьбу Лукасевича в связи с предлагаемой им революцией в логике.

О принципе противоречия у Аристотеля. Критическое исследование — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «О принципе противоречия у Аристотеля. Критическое исследование», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Как минимум еще четыре раза Лукасевич ставит свое открытие трехзначной логики на уровень создания неевклидовых геометрий. В курсе лекций «Элементы математической логики» мы находим следующее утверждение: «Отношение многозначных логик к двузначной логике напоминает отношение неевклидовой геометрии к геометрии Евклида» [Lukasiewicz 1929: 69]. А в следующем году, обсуждая философское значение многозначных систем пропозициональной логики, в том числе трехзначную модальную логику, построенную на основе Ł 3, Лукасевич говорит: «Мне кажется, что философское значение систем логики, рассмотренных здесь, может быть, по крайней мере, так же высоко, как значение неевклидовых систем геометрии» [Lukasiewicz 1930/1970: 176] [46]. Это было подтверждено в 1937 г. в статье «В защиту логистики»: «… с существованием систем многозначной логики мы должны сегодня считаться в такой же степени, как, например, с существованием систем неевклидовой геометрии» [Лукасевич 1999: 229]). Наконец, это же было провозглашено на международной конференции «Основания и методы математических наук», состоявшейся в Цюрихе в 1938 г.: «Эти различные формы многозначной пропозициональной логики находятся более или менее в том же самом отношении к классическому двузначному пропозициональному исчислению, как различные системы неевклидовой геометрии находятся к евклидовой» (см. [Łukasiewicz 1941/1970: 293]) [47].

Именно здесь во время дискуссии [48]свойства трехзначной логики были подвергнуты серьезной критике. Лукасевичу явно было указано, что принцип противоречия в его логике не работает, поскольку приведенное им конъюнктивное высказывание: «через год я буду в Варшаве и через год я не буду в Варшаве» – в его интерпретации имеет истинностное значение «возможность», хотя совершенно ясно, что такое конъюнктивное утверждение (противоречие) должно быть ложным сейчас. Более того, впоследствии обратили внимание, что хотя Лукасевич впервые ввел строгое различие между принципом бивалентности и принципом исключенного третьего, но в его трехзначной логике не принимается ни то, ни другое, что ведет к неадекватной экспликации аристотелевского решения проблемы логического фатализма. Аристотель явно утверждал, что альтернатива в виде принципа исключенного третьего всегда является истинной. Отметим, что именно в силу этого, Лукасевич и ввел различие между двумя принципами. Обратим также внимание на то, что при стандартном определении “лжи”, восходящем к Аристотелю, а именно: «ложность есть истинность отрицания (противоречивого) высказывания» – указанные принципы становятся эквивалентными (см. [Карпенко 1995]). Но это только в “классических” контекстах, для многих неклассических логик такая эквивалентность не имеет места. Поэтому проведенное Лукасевичем различие является фундаментальным, но в данном случае не работает. Таким образом, предложенное Лукасевичем интуитивно-содержательное толкование трехзначной логики, как аппарата для решения проблемы логического фатализма, нельзя совместить с формально-логическими свойствами этой логики, а на самом деле с ее истинностно-функциональным характером [49].

12. Столкнувшись с возрастающей критикой того факта, что в его логике принцип противоречия отбрасывается (хотя напомним, что именно жесткая критика этого принципа лежит в основе его книги «О принципе противоречия у Аристотеля»), Лукасевич, не возразив ни одному из своих оппонентов [50], как минимум дважды отказывается от своего главного научного достижения [51]. Первый раз в 1953 г. при создании новой модальной четырехзначной логики, которую он назвал «Ł-модальной логикой». Эта логика получается посредством умножения двузначной матрицы классической логики на саму себя. Отсюда все законы классической логики остаются в силе и нужно только дополнить ее четырехзначными модальностями. Также рассмотрено обобщение на бесконечнозначный случай. Свое мнение в [Łukasiewicz 1930/1970: 173]) о том, «что среди всех многозначных систем только две могут претендовать на философское значение: трехзначная и бесконечнозначная системы», Лукасевич теперь считает ошибочным (см. [Łukasiewicz 1953/1970: 371]).

Еще более резкое отрицание всего предыдущего содержится в последней книге Лукасевича: «Сегодня я вижу, что эта система [трехзначная логика] не удовлетворяет всем нашим интуитивным пониманиям модальностей и должна быть заменена описанной ниже системой. Я стою на той точке зрения, что в любой модальной логике должно быть сохранено классическое исчисление предложений. До сих пор это исчисление продемонстрировало свою надежность и полезность и оно не должно быть отвергнуто без достаточно веских оснований » (курсив мой. – А.К. ) [Лукасевич 1959: 233]. Однако заметим, что Ł-модальная логика (вместе с её ℵ 0– обобщением) не получила в дальнейшем сколько-нибудь интересного развития и оказалась еще менее интуитивно приемлемой, чем трехзначная логика Ł 3 . [52]Остается только добавить, что через много лет аналогия Лукасевича между неевклидовыми геометриями и логиками, нарушающими принцип бивалентности, была высоко оценена Г. Пристом в [Priest 2003: 465].

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «О принципе противоречия у Аристотеля. Критическое исследование»

Представляем Вашему вниманию похожие книги на «О принципе противоречия у Аристотеля. Критическое исследование» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


libcat.ru: книга без обложки
Владимир Лукасевич
Отзывы о книге «О принципе противоречия у Аристотеля. Критическое исследование»

Обсуждение, отзывы о книге «О принципе противоречия у Аристотеля. Критическое исследование» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x