Анника Брокшмидт - Научный баттл, или Битва престолов - как гуманитарии и математики не поделили мир

Здесь есть возможность читать онлайн «Анника Брокшмидт - Научный баттл, или Битва престолов - как гуманитарии и математики не поделили мир» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2019, ISBN: 2019, Издательство: Издательство АСТ, Жанр: Философия, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Научный баттл, или Битва престолов: как гуманитарии и математики не поделили мир: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Научный баттл, или Битва престолов: как гуманитарии и математики не поделили мир»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Вы когда-нибудь задавались вопросом, что важнее: физика, химия и биология или история, филология и философия? Самое время поставить точку в вечном споре, тем более что представители двух этих лагерей уже давно требуют суда поединком.
Из этой книги вы узнаете массу неожиданных подробностей о жизни выдающихся ученых, которые они предпочли бы скрыть. А также сможете огласить свой вердикт: кто внес наиценнейший вклад в развитие человечества — Григорий Перельман или Оскар Уайльд, Мартин Лютер или Альберт Эйнштейн, Мария Кюри или Томас Манн?

Научный баттл, или Битва престолов: как гуманитарии и математики не поделили мир — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Научный баттл, или Битва престолов: как гуманитарии и математики не поделили мир», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

А теперь, дорогие гуманитарии, можно вынуть изо рта капы, если, конечно, вы успели их надеть. Слова оказались абсолютно равными научным формулам по силе. Язык прочно связан, свит воедино с гуманитарными науками, и именно их представители впервые исследовали, сформулировали, разложили по полочкам то, что характеризует нас сегодня. А после рассказали всем об этом. Похоже на хороший удар кулаком, от которого будет долго звенеть в ушах.

Самая лучшая комбинация чисел

Те, кто думает, что подлинные ученые дрогнули под напором цитат из произведений великих классиков, сейчас же должны взглянуть фактам в лицо. Гёте, Шиллер и Шекспир, конечно, спровоцировали развитие языка и обогатили его некоторым количеством выражений, но как можно сравнивать эти филологические упражнения с куда более простыми, емкими и гениальными научными формулами? На первый взгляд они кажутся невзрачными, но при ближайшем рассмотрении обнаруживают глубокое проникновение в законы природы. Можно сказать, это жесткий удар слева против хилых и многословных едва осязаемых тычков.

Разумеется, в этой главе найдется место только одной подлинной знаменитости, рыцарю в блестящих доспехах, стоящему в авангарде и приковывающему к себе всеобщее внимание. Но лидера не бывает без тыла.

Возьмем, например, выражение «выживание наиболее приспособленных» (англ. survival of the fittest ). Слишком многие понимают его превратно. Оно принадлежит английскому философу и социологу Герберту Спенсеру, и его в пятом издании своего «Происхождения видов» использует Чарльз Дарвин. Даже биологи его избегают. Но приспособленность в данном случае означает не физическую форму, а адекватность среде. То есть выживает тот, кто сможет оставить наибольшее количество потомков. Тем временем эту фразу на английском языке нередко можно увидеть на стенах спортзала: и в этом контексте она обещает выживание обладателю наибольших бицепсов. Что неверно: спасется тот, чьи тестикулы крупнее.

Спросите математика, какая формула самая красивая. И многие укажут вам на так называемую Эйлерову характеристику. Почему это так? Во-первых, возможно, потому что в этой формуле иррациональное число π занимает видное место. Все, кому знаком хоть один студент-математик, знают, с каким прилежанием он затвердил все знаки после запятой в числе π, и догадываются, как почитают это число в математических кругах. Во-вторых, в этой формуле присутствует также младший брат числа π — число Эйлера е , которое, как и старший брат, то и дело возникает на центральных позициях в математике и также имеет совершенно неприличное количество знаков после запятой. Не спешите уходить, дочитайте до конца! Ведь в-третьих, нам потребуются только знак равенства, минус и единица. Если предположить, что можно извлечь корень из отрицательного числа и что корень из –1 равен i , тождество Эйлера готово: eiπ = –1. Говоря словами Шекспира: чтобы разбить лед в разговоре с незнакомым математиком, достаточно вскользь упомянуть эту формулу.

Тот факт, что оба иррациональных числа с бесконечной последовательностью знаков после запятой так замечательно соединились благодаря корню из –1, заставляет любого присутствующего на лекции по математике в изумлении открыть рот. Это почти как если бы человек только что понял, что сложность человеческой души, помноженная на сложность всех человеческих отношений друг с другом, равняется чему-нибудь столь же удивительному, что и среднестатистический булыжник, который можно подобрать на любой обочине. Предположу, что это сравнение не совсем подходит, но сравнения из обычной жизни вообще не слишком хорошо уживаются с математическими формулами.

Спросите увлеченного теоретической физикой о любимой гипотезе, любимой теореме или любимой формуле, и он расскажет вам о теореме Нётер. Она была доказана в 1918 году немецким математиком Эмми Нётер, которая привнесла несколько невероятно важных понятий — прежде всего в теоретическую физику и общую алгебру. На протяжении своей карьеры ей приходилось добиваться признания в университетской среде, где преобладали мужчины. Лекции во всем Гёттингенском университете посещали всего две девушки, одной из которых была Нётер. И каждый раз ей приходилось буквально просить у профессора разрешения появиться на очередном мероприятии. Защитив диссертацию, она преподавала в разных учебных заведениях, не получая за это никакого жалованья, пока наконец в 1923 году она не нашла оплачиваемое место в Гёттингене. Но, впрочем, она его вскоре потеряла, когда к власти пришли национал-социалисты. За пределами боксерского ринга она и Жорж Санд нашли бы много общих тем для разговора. Свои научные результаты Нётер публиковала чаще под именем своего коллеги, отводя себе роль соавтора. Ее теоретические построения, несмотря на сопутствовавшие сложности и неприятности, были многочисленными, новаторскими и местами очень эстетичными. Но чтобы распознать их красоту, нужно отзаниматься физикой и математикой несколько семестров. Так что же делает теорему Нётер особенно изящной? Все слова в ней простые, но даже и при повторном прочтении теорема кажется невероятно сложной, и только крепко задумавшись над ней, вы осознаете ее глубокую мудрость. Теорема Нётер гласит, что каждой непрерывной симметрии физической системы соответствует некий закон сохранения, например сохранения энергии. В двух словах объяснить всю широту этого утверждения не так-то просто, но идея такова: абстрактное математическое понятие (симметрия) неожиданно вступает в отношения с другим понятием, из области физики — в нашем случае энергией — и выводит закон ее сохранения. Так вот, значение энергии не меняется, равно как и потребление пива в Германии последние десять лет. В магазинах много разного пива, открываются новые пивоварни, другие производства сворачиваются, но совокупность потребляемого пива в литрах остается неизменной. И теорема Нётер удивительным образом связывает абстрактный закон сохранения с энергией. Это очень полезный принцип, основополагающий и немного волшебный — восхитительная теорема, да и только.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Научный баттл, или Битва престолов: как гуманитарии и математики не поделили мир»

Представляем Вашему вниманию похожие книги на «Научный баттл, или Битва престолов: как гуманитарии и математики не поделили мир» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Научный баттл, или Битва престолов: как гуманитарии и математики не поделили мир»

Обсуждение, отзывы о книге «Научный баттл, или Битва престолов: как гуманитарии и математики не поделили мир» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x