Валентин Асмус - ЛОГИКА

Здесь есть возможность читать онлайн «Валентин Асмус - ЛОГИКА» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 1947, Издательство: ОГИЗ, Жанр: Философия, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

ЛОГИКА: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «ЛОГИКА»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Книга использует формат FB вер. 2.1. Для полноценного воспроизведения содержимого (текст содержит таблицы) надо использовать программы чтения, поддерживающие этот формат. Это могут быть CoolReader3, FB2Edit (в режиме чтения) и др.
Предлагаемая книга представляет систематическое изложение учений логики. Она может быть использована студентами высших учебных заведений, аспирантами научно-исследовательских институтов и лицами, приступающими к самостоятельному изучению логики. Преподаватели логики в средней школе найдут в ней подробное освещение вопросов, входящих в программу их предмета, но лишь кратко излагаемых в учебниках логики для старшего класса.

ЛОГИКА — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «ЛОГИКА», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

§ 16.Второй распространённой разновидностью обусловливающего доказательства является доказательство, в котором, удостоверившись в ложности некоторого суждения, заключают отсюда к ложности основного умозаключения, из которого это суждение следует.

Но ложность умозаключения может быть обусловлена: 1) или ложностью посылок, 2) или неправильностью логической связи между посылками, 3) или соединением ложности посылок с ошибочностью устанавливаемой между ними логической связи.

Поэтому, установив на основании ложности тезиса — ложность обосновывающего этот тезис умозаключения, мы ещё не знаем, каким именно из указанных трёх условий вызывается в каждом данном случае ошибочность умозаключения. Для решения этого вопроса должны быть исследованы, во-первых, всё посылки основного умозаключения, во-вторых, логическая связь между ними.

При этом исследовании возможны два случая. Первый из них — когда исследованием устанавливается, что логическая связь между посылками основного умозаключения правильная и что все посылки, за исключением одной единственной, которая не рассматривается, истинны. Результатом исследования в этом случае будет разделительное умозаключение: «Ошибочными могли быть или самые посылки, или логическая связь между ними. Но так как ни логическая связь между посылками, ни посылки — кроме одной, нами не рассмотренной,— не ошибочны, то ошибочна та единственная посылка, которая осталась не рассмотренной».

§ 17.Примером этого случая являются доказательства, называемые апагогическими, или «приведением к нелепости» (reductio ad absurdum). Если бы, рассматривая данное суждение, мы могли сразу противопоставить ему другое суждение, логически несовместимое с первым и в то же время заведомо истинное, то мы тем самым опровергли бы данное суждение. Это был бы обыкновенный случай так называемого «опровергающего» (см. выше § 11), а не обусловливающего доказательства.

Но если мы не можем сразу найти такое суждение, которое, будучи несовместимым с данным, было бы в то же время заведомо истинным, то опровержение тезиса принимает ту форму обусловливающего доказательства, о которой шла речь выше. А именно: строится умозаключение, в котором тезис, т. е. опровергаемое суждение, является одной из посылок. Все остальные посылки умозаключения подбираются истинные, логическая связь между ними устанавливается правильная. Получив — по правилам вывода — заключение, находят затем другое суждение с таким расчётом, чтобы оно было логически несовместимым с нашим заключением и в то же время чтобы оно было истинным. Найдя такое суждение, тем самым опровергают заключение. В свою очередь опровержение заключения обнаруживает ошибочность умозаключения, из которого заключение было выведено. Но в чём может состоять в этом случае ошибочность умозаключения? Так как логическая связь в нём правильная и так как все посылки, кроме той, которая является тезисом доказательства, истинны, то ложным должен быть только тезис.

Рис 67 Пример апагогического доказательства В геометрии доказывается теорема - фото 66

Рис. 67

Пример апагогического доказательства. В геометрии доказывается теорема (см. рис. 67), согласно которой при условии если два равных угла АОВ и COD имеют общую вершину О и две стороны ОВ и ОС на одной прямой линии, то и две другие стороны ОА и OD составляют одну прямую линию, и потому углы АОВ и COD — вертикальные. Доказывается теорема следующим образом. Положим, что АОD — не прямая, а ломаная линия. Положим, далее, что ОЕ есть продолжение стороны АО . Тогда углы АОВ и СОЕ как углы, составленные пересечением двух прямых линий, будут углы вертикальные и, следовательно, равные между собой. Но по положению ∠DОС равен ∠АОВ . Две величины, равные порознь третьей, равны между собой. Поэтому ∠ЕОС должен равняться ∠СОD (так как ∠ЕОС и ∠COD равны порознь каждый ∠АОВ ).

Но ∠ЕОС , очевидно, не может равняться ∠СОD , так как ∠СОЕ есть только часть ∠СОD . Итак, предположение, будто АОD не есть прямая линия, как предположение, приводящее к нелепому заключению, будто часть равна своему целому, ложно. Но если ложно, что АОD не есть прямая линия, то должно быть истинным, что АОD — прямая и что углы AОВ и СОD — вертикальные.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «ЛОГИКА»

Представляем Вашему вниманию похожие книги на «ЛОГИКА» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «ЛОГИКА»

Обсуждение, отзывы о книге «ЛОГИКА» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x