Если в суждении идет речь обо всем объеме субъекта и предиката, тогда эти термины считаются распределенными. Если же говорится лишь по крайней мере о части субъекта или предиката, тогда считают, что термины не распределены. В общеутвердительном суждении «все S есть P » обо всех предметах, обозначаемых понятием S , говорится, что они включаются в объем P . Все S совпадают с P . Но мы не можем сказать, что все P включаются в объем S . Итак, в общеутвердительном суждений субъект распределен, а предикат не распределен.
В частноутвердительном суждении «некоторые S есть P » речь идет не обо всех S , а лишь о части их. Здесь часть S совпадает с частью P .
Следовательно, здесь оба термина суждения являются нераспределенными. В общеотрицательном суждении «ни одно S не есть P » обо всех S говорится, что они исключаются из P , причем исключаются они не из части P , а из всего P . Следовательно, оба термина суждения в данном случае распределены. Наконец, в частноотрицательном суждении «некоторые S не есть P » по крайней мере часть объема S исключается из объема P , следовательно, S не распределено. Но эта часть S исключается не из части, а из всего объема P , следовательно, P в данном случае распределено. Чтобы это соотношение стало еще яснее, можно сопоставить данное суждение с общеотрицательным. В чем различие между общеотрицательным и частноотрицательным суждениями? Только в субъекте. Предикат же одинаков в том и другом случае. Поэтому, если предикат в одном из этих суждений распределен, он будет распределен и в другом.
Суммируя все то, что здесь сказано о распределенности терминов, можно сделать два важных общих вывода:
1) субъект всегда распределен только в общих суждениях;
2) предикат всегда распределен только в отрицательных суждениях.
Во всех рассмотренных выше суждениях субъект и предикат не расчленялись и каждый из них мыслился как единое целое. Но возможны и суждения другого типа, когда субъект и предикат охватывают не одно, а два или более понятий. Например, «Петя станет или поэтом, или ученым». Здесь предикат «станет или поэтом, или ученым» состоит из двух самостоятельных понятий «станет поэтом», «станет ученым».
Такие суждения с расчлененным предикатом или субъектом называются разделительными . Само название указывает на расчленение здесь терминов суждения.
Союз «или», соединяющий разные части предиката в разделительном суждении, может употребляться в двух значениях:
1) неисключающее «или», когда в суждении « S есть или P 1или P 2или P 3» S может в принципе обладать одновременно всеми этими предикатами. Например, Петя может стать и поэтом, и писателем, и ученым. Суждения, в которых «или» имеет такой смысл, называются соединительно-разделительными ;
2) исключающее «или», когда в суждении « S есть или P 1или P 2или P 3» субъект обладает только одним из этих трех предикатов, например: «эта птица — или ворона, или сорока, или галка».
В этом случае «или», конечно, исключает каждый из этих 3 предикатов из двух других. Такие суждения называются исключающе-разделительными .
Исключающе-разделительное суждение может быть преобразовано в другой вид. Смысл этого суждения в том, что если S есть P 1, то S не есть P 2или P 3: если эта птица — ворона, значит, эта птица не сорока и не галка. В полученном суждении имеется условие, в котором истинность одной части обусловливает истинность другой части, в котором первая часть — основание , вторая часть — следствие , вытекающее из этого основания. Такие суждения называются условными . Условные суждения могут быть получены, таким образом, путем преобразования разделительных суждений.
В нашем примере в обеих частях условного суждения — и в основании, и в следствии — одно и то же S (птица), связки же разные: в основании — утвердительная, в следствии — отрицательная. Но это лишь частный случай условных суждений. Возьмем, например, суждение «если мороз усилится, то река замерзнет». В этом суждении субъект основания (мороз) не совпадает с субъектом следствия (река), а связка в той и другой части суждения положительная. Такой тип суждения является наиболее характерным для условных суждений. Путем различных преобразований в формулах суждений получим общий вид условного суждения.
Читать дальше