Роль математики в современной физике несравненно шире, чем просто роль удобного инструмента исследования. Новая и новейшая физика — наука не столько механическая, точнее, вовсе не механическая, сколько математическая (например, теория струн, одна из теорий в физике элементарных частиц или физики высоких энергий).
В своей повседневной работе физики используют математику для получения результатов, вытекающих из законов природы, для проверки применимости условных утверждений этих законов к наиболее часто встречающимся или интересующим их конкретным обстоятельствам. Чтобы это было возможным, законы природы должны формироваться на математическом языке.
Разумеется, для формулировки законов природы физики отбирают лишь некоторые математические понятия, используя, таким образом, лишь небольшую долю всех имеющихся в математике понятий.
Так мы приходим к бесспорному и неопровержимому выводу: математика и физическая реальность нераздельны. Математика — поскольку она говорит нам о составляющих физического мира и поскольку наше знание этого мира может быть выражено только в математических понятиях — так же же реальна, как столы и стулья, бумага, на которой мы пишем, ручка и т. д. и т. п..
Резюме
Постоянно углубляющаяся математизация всех разделов физики, впрочем, как и других естественных наук, — норма нашего времени. Введение в них новых, все более абстрактных математических структур — единственный пока что способ придать вновь открываемым и уже известным законам природы достаточно универсальный, всеобщий характер.
Нельзя не признать, что полного соответствия между математикой и физической, химической и биологической реальностью не существует. Однако немалые успехи математики в описании физических и химических реальных явлений — будь то электромагнитные волны, эффекты, предсказанные теорией относительности, математическая интерпретация того немногого, что доступно наблюдению на атомном уровне, в микромире, а также наблюдениям в мегамире, и даже в свое время ньютоновская теория тяготения, либо эволюционные механизмы химических систем, не говоря о сотнях других достижений, — требуют какого-то объяснения.
Согласуется ли природа с человеческой логикой? Почему математика эффективна и при описании тех физических и химических явлений, которые непонятны для нас? Математика была и остается превосходным методом исследования, открытия и описания физических явлений. Даже если математические структуры сами по себе не отражают реальности физического мира, их тем не менее можно считать единственным ключом к познанию реальности. Неевклидова геометрия не только не уменьшила ценности математики, но, напротив, способствовала расширению ее приложений.
Эйнштейн был убежден в том, что созданная человеком математика хотя бы частично определяется реальностью. Если бы даже оказалось, что мир идей нельзя вывести из опыта логическим путем, и что в определенных пределах этот мир есть порождения человеческого разума, без которого никакая наука невозможна, все же он столь мало был бы независим от природы наших ощущений, как одежда — от форм человеческого тела.
Великий Давид Гильберт хотел доказать непротиворечивость математики, но другой великий математик и логик Курт Гедель показал, что арифметика и, как мы теперь стали понимать, вообще всякая достаточно богатая система, неполна; и как бы ни старались усовершенствовать и дополнить ее дедуктивную и аксиоматическую структуру, всегда найдется осмысленное предложение, которое будет недоказуемым и неопровержимым.
Кроме теоремы о неполноте арифметики, Гедель получил еще один результат. Он доказал, что непротиворечивость арифметики или любой другой достаточно богатой системы, не может быть установлена средствами самой этой системы, а тем более средствами еще более узкой финитной математики. Отсюда следовало, что непротиворечивость некоторой системы может быть доказано только путем ее погружения в более развернутую систему, то есть путем использования новых средств, выходящих за пределы первоначальной системы.
По этой причине теорема Геделя устанавливает ограничения на научное знание и может быть использована в качестве одного из критериев науки (научности).
Завершая теоретико-концептуальную часть книги, мы должны констатировать, что наука, математический фундамент которой заложил Пифагор, семантический — Платон, логический — Аристотель, эмпирическую ориентацию обосновал Роджер Бэкон, в своем развитии достигла естественных границ. Пифагор смог сформулировать три основополагающих принципа науки, определившие на последующие тысячелетия своеобразие научного мировоззрения и обеспечившие доминирование европейского стиля мышления: 1) фундаментальные законы природы выразимы на языке математики; 2) численные соотношения способны выявить скрытую в природе гармонию и порядок; 3) началом познания Вселенной (космоса) является ее измерение. Усилия Пифагора были направлены на создание теоретической математики, способной выразить единое в многообразии (унификация физики), неизменное в изменяющемся (инварианты), тождество несхожего (классификация). Платон вслед полагал, что измерение Вселенной не только откроет ее геометрическую структуру, но, главное, позволит раскрыть замысел демиурга (творца), понять цель создания Вселенной. В первооснове всего должна лежать элементная единая сущность, называвшаяся по гречески архэ, по латыни — материя. Из единого должно быть сконструировано все многообразие объектов Вселенной (всеобъемлющее единство).
Читать дальше