Дмитрий Гусев - Логика. Учебное пособие

Здесь есть возможность читать онлайн «Дмитрий Гусев - Логика. Учебное пособие» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2015, ISBN: 2015, Издательство: Array Литагент «Прометей», Жанр: Философия, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Логика. Учебное пособие: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Логика. Учебное пособие»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Что такое логика? Чем занимается эта древняя и в то же время всегда молодая наука? Зачем она нужна, можно ли без нее обойтись, и какую роль она играет в жизни человека? Что такое формы мышления и каковы основные законы мышления? К чему приводят многочисленные логические ошибки, которые мы непроизвольно или сознательно допускаем в мышлении и речи? Что такое доказательство и каковы его разновидности? Что представляют собой основные правила доказательства и ошибки, возникающие при их нарушении? Как сделать свои мысли ясными и отчетливыми, как надо их выражать, чтобы окружающие всегда понимали, что вы хотите сказать; как отстаивать свою точку зрения и убеждать собеседника? Как грамотно вести дискуссию и одерживать победу в споре? Что такое софизмы и логические парадоксы? Обо всем этом вы узнаете, прочитав книгу, которая отличается от многих других учебных пособий по логике тем, что читать ее будет нетрудно: автор, много лет преподающий логику студентам и школьникам, постарался сделать предлагаемый вашему вниманию материал простым и ясным, а по возможности – интересным и увлекательным.
Книга адресована студентам и школьникам, изучающим логику, преподавателям – в качестве обмена педагогическим опытом – и всем, интересующимся логикой и другими гуманитарными науками.

Логика. Учебное пособие — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Логика. Учебное пособие», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Для того, чтобы предотвратить возможные негативные последствия употребления неопределенных понятий, в их содержание вводятся дополнительные признаки, благодаря чему оно (содержание) становится ясным, а объем понятия – резким. Например, желая преодолеть неопределенность понятия молодая семья , можно ввести в его содержание признак – «супругам не более 30 лет». Так же неопределенное понятие опытный специалист возможно превратить в определенное, добавляя к его содержанию признак – «стаж работы в данной области не менее 10 лет». Однако, в этом случае дополнительный признак выбирается произвольно: почему бы не считать молодой ту семью, в которой супругам не более 25 лет или же не более 35 лет, точно так же возможно утверждать, что опытный специалист – это тот, кто проработал в данной области не менее 5 лет или же не менее 15 лет, или даже – 20 лет. Таким образом, проясняющий признак для содержания неопределенного понятия всегда относителен, т. к. зависит от договоренности между людьми в каждой конкретной ситуации, в силу чего превратить неопределенное понятие в определенное, по крупному счету, невозможно: неопределенное понятие, в конечном итоге, остается неопределенным.

1.5. В каких отношениях могут быть понятия?

Между понятиями, а вернее между их объемами, существуют определенные отношения, знание которых является в логике одним из наиболее важных (можно сказать, что виды отношений между понятиями в логике – это примерно то же самое, что в математике таблица умножения). Обычно понятия делят на сравнимые( например, Москва и столица России, писатель и россиянин, город и населенный пункт, лев и тигр, горячая вода и холодная вода, высокий человек и невысокий человек ) и несравнимые(например, пингвин и кирпич, треугольник и президент, учебное заведение и небесное тело, спортсмен и город, книга и небоскреб, растение и государство ).

Сравнимые понятия бывают совместимымии несовместимыми. Совместимыминазываются понятия, объемы которых имеют общие элементы, каким-либо образом соприкасаются. Например, понятия спортсмен и американец совместимые, т. к. их объемы имеют общие элементы, или объекты: есть такие спортсмены, которые являются американцами и, наоборот, есть такие американцы, которые являются спортсменами. Несовместимыминазываются понятия, объемы которых не имеют общих элементов, никаким образом не соприкасаются. Например, понятия треугольник и квадрат являются несовместимыми, потому что их объемы не имеют общих элементов: ни один треугольник не может быть квадратом и наоборот.

Совместимые понятия могут быть в отношениях равнозначности, пересечения и подчинения.

Понятия находятся в отношении равнозначностив том случае, если их объемы полностью совпадают. Например, равнозначными будут поняти я квадрат и равносторонний прямоугольник , т. к. любой квадрат – это равносторонний прямоугольник, а любой равносторонний прямоугольник – это квадрат. В логике принято изображать отношения между понятиями с помощью круговых схем Эйлера (известный математик XVIII века): одно понятие, а вернее его объем, изображается одним кругом, а второе, т. е. его объем – другим. Взаимное расположение этих кругов на схеме (они могут полностью совпадать или пересекаться, или не соприкасаться, или один круг располагается внутри другого) и показывает то или иное отношение между понятиями. Так отношение равнозначности между понятиями квадрат и равносторонний прямоугольник изображается схемой, на которой два круга, обозначающие два равных объема, полностью совпадают:

Понятия находятся в отношении пересечениятогда когда их объемы совпадают - фото 3

Понятия находятся в отношении пересечениятогда, когда их объемы совпадают только частично. Например, пересекающимися будут понятия школьник и спортсмен : есть такие школьники, которые являются спортсменами, и есть такие спортсмены, которые являются школьниками; но в то же время школьник может не быть спортсменом, так же, как и спортсмен может не быть школьником. На схеме Эйлера отношение пересечения изображается двумя пересекающимися кругами (заштрихованная часть показывает частично совпадающие объемы двух понятий):

Понятия находятся в отношении подчиненияв том случае когда объем одного из них - фото 4

Понятия находятся в отношении подчиненияв том случае, когда объем одного из них обязательно больше объема другого и полностью его в себя включает (один объем как бы подчиняется другому). Например, в отношении подчинения находятся понятия карась и рыба , т. к. все караси – это обязательно рыбы, но рыбами являются не только караси, есть и другие виды рыб. Таким образом, объем понятия карась является меньшим по отношению к объему понятия рыба и полностью в него включается (подчиняется ему). В отношении подчинения понятия с меньшим объемом называются видовыми, а с большим – родовыми. На схеме Эйлера отношение подчинения изображается двумя кругами, один из которых располагается внутри другого:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Логика. Учебное пособие»

Представляем Вашему вниманию похожие книги на «Логика. Учебное пособие» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Логика. Учебное пособие»

Обсуждение, отзывы о книге «Логика. Учебное пособие» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x