Томас Дэвенпорт - Внедрение искусственного интеллекта в бизнес-практику. Преимущества и сложности

Здесь есть возможность читать онлайн «Томас Дэвенпорт - Внедрение искусственного интеллекта в бизнес-практику. Преимущества и сложности» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2021, ISBN: 2021, Жанр: org_behavior, management, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Внедрение искусственного интеллекта в бизнес-практику. Преимущества и сложности: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Внедрение искусственного интеллекта в бизнес-практику. Преимущества и сложности»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Ажиотаж вокруг искусственного интеллекта и его применения в классическом бизнесе не утихает, но многие компании до сих пор не понимают, какую реальную выгоду принесет им внедрение новых технологий в их бизнес-процессы.
Эксперт в области аналитики и больших данных, преподаватель в Гарвардской школе бизнеса Томас Дэвенпорт в своей книге покажет, как можно эффективно интегрировать ИИ и когнитивные технологии в текущую бизнес-стратегию предприятия, чтобы сделать продукты привлекательнее, процессы совершеннее, а компанию успешнее.
Он подробно рассматривает преимущества и сложности внедрения различных видов технологий: статистическое машинное обучение, нейронные сети, глубокое обучение, обработку естественного языка, экспертные системы на основе правил, роботов и роботизированную автоматизацию процессов. И приводит примеры как успешного, так и неудачного использования ИИ в разных компаниях: Amazon, Google, Facebook, GlaxoSmithKline, Uber, GE, цифровом банке DBS и др.

Внедрение искусственного интеллекта в бизнес-практику. Преимущества и сложности — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Внедрение искусственного интеллекта в бизнес-практику. Преимущества и сложности», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Что мы называем искусственным интеллектом и когнитивными технологиями?

Вообще говоря, ИИ и когнитивные технологии используют возможности, которыми ранее обладали только люди (а именно знание, понимание и восприятие), для решения узко определенных (при текущем состоянии технологий) задач. Как правило, это задачи, с которыми быстро справляется любой человек, – идентификация изображений или трактовка смысла предложений. Когда-то решение этих задач было под силу только человеческому мозгу (поэтому они и входят в категорию когнитивных). Немногие сегодня готовы спорить с этим громким определением, хотя не утихают дискуссии о том, насколько близко ИИ подошел к дублированию структур и функций мозга (на мой взгляд, он еще достаточно далек от этого).

Однако важно понимать, что в повседневном применении терминов «искусственный интеллект» и «когнитивные технологии» наблюдается значительная неопределенность. Кое-кто включает в спектр в высокой степени статистические технологии вроде машинного обучения, хотя машинное обучение имеет больше общего с традиционной аналитикой, чем с другими формами ИИ. Некоторые из тех, кто считает машинное обучение искусственно интеллектуальным, даже предпочитают этот термин термину «искусственный интеллект». Кое-кто включает в сферу ИИ технологию роботизированной автоматизации процессов (RPA), которая пока не демонстрировала особой интеллектуальности. Я намереваюсь использовать термин «искусственный интеллект» в самом широком смысле, отчасти потому, что мир, похоже, склоняется именно к этому, а отчасти потому, что все технологии, претендующие на звание искусственного интеллекта, со временем действительно становятся более интеллектуальными.

На основании этого можно сделать вывод о существовании еще одной сложности в использовании ИИ на предприятиях: дело в том, что технологий ИИ достаточно много и большинство из них можно применять несколькими способами, приспосабливая для выполнения различных функций. Комбинации технологий и функций достаточно сложны – настолько, что исследователь ИИ Крис Хэммонд даже предложил «периодическую систему» ИИ [12] Kris Hammond, "A Periodic Table of AI," AI XPrize website, December 14, 2016, https://ai.xprize.org/news/periodic-table-of-ai . . Далее приведена таблица, в которой перечисляются семь ключевых технологий, дается краткое описание каждой из них, а также называются сферы их применения и типичные функции.

Я также опишу, насколько распространена каждая из технологий в мире бизнеса. Я работаю со многими компаниями и прежде всего являюсь профессором в бизнес-школе, но также занимаю должность старшего советника по стратегии и аналитике в Deloitte, что предполагает оказание консалтинговых услуг по вопросам искусственного интеллекта. В 2017 г. я помог подготовить и проанализировать опрос, в котором приняли участие 250 американских работников руководящего звена, осведомленных о когнитивных технологиях, то есть работающих в организациях, активно использующих такие технологии, и понимающих принципы их применения. В первую очередь участников опроса спрашивали, какие технологии используются в их компаниях.

Ниже приведена таблица, в которой подробнее описывается каждая из технологий и сфера ее применения.

Статистическое машинное обучение Машинное обучение это техника - фото 1
Статистическое машинное обучение

Машинное обучение – это техника автоматической подгонки моделей к данным и «обучения» посредством тренировки моделей данными. Машинное обучение представляет собой одну из самых распространенных форм ИИ: в проведенном в 2017 г. опросе Deloitte 58 % из 250 «осведомленных о когнитивных технологиях» руководителей, компании которых уже внедряли ИИ, ответили, что в их бизнесе используется машинное обучение. Эта техника лежит в основе многих решений в сфере искусственного интеллекта и имеет множество вариантов. Резкий рост объемов данных внутри компаний и – особенно – за их пределами сделал возможным и необходимым применение машинного обучения для осмысления всей этой информации.

Более сложную форму машинного обучения представляет собой нейронная сеть – доступная с 1960-х гг. технология, которая используется для категоризации, например для выявления мошенничества в сфере кредитных операций. Она рассматривает каждую задачу как совокупность входящих и исходящих данных, а также переменных или «функций» различного веса, которые связывают входящие данные с исходящими. Работа этой технологии напоминает процесс обработки сигналов нейронами мозга, но аналогия с мозгом не слишком удачна.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Внедрение искусственного интеллекта в бизнес-практику. Преимущества и сложности»

Представляем Вашему вниманию похожие книги на «Внедрение искусственного интеллекта в бизнес-практику. Преимущества и сложности» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Внедрение искусственного интеллекта в бизнес-практику. Преимущества и сложности»

Обсуждение, отзывы о книге «Внедрение искусственного интеллекта в бизнес-практику. Преимущества и сложности» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x