Томас Дэвенпорт - Внедрение искусственного интеллекта в бизнес-практику. Преимущества и сложности

Здесь есть возможность читать онлайн «Томас Дэвенпорт - Внедрение искусственного интеллекта в бизнес-практику. Преимущества и сложности» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2021, ISBN: 2021, Жанр: org_behavior, management, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Внедрение искусственного интеллекта в бизнес-практику. Преимущества и сложности: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Внедрение искусственного интеллекта в бизнес-практику. Преимущества и сложности»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Ажиотаж вокруг искусственного интеллекта и его применения в классическом бизнесе не утихает, но многие компании до сих пор не понимают, какую реальную выгоду принесет им внедрение новых технологий в их бизнес-процессы.
Эксперт в области аналитики и больших данных, преподаватель в Гарвардской школе бизнеса Томас Дэвенпорт в своей книге покажет, как можно эффективно интегрировать ИИ и когнитивные технологии в текущую бизнес-стратегию предприятия, чтобы сделать продукты привлекательнее, процессы совершеннее, а компанию успешнее.
Он подробно рассматривает преимущества и сложности внедрения различных видов технологий: статистическое машинное обучение, нейронные сети, глубокое обучение, обработку естественного языка, экспертные системы на основе правил, роботов и роботизированную автоматизацию процессов. И приводит примеры как успешного, так и неудачного использования ИИ в разных компаниях: Amazon, Google, Facebook, GlaxoSmithKline, Uber, GE, цифровом банке DBS и др.

Внедрение искусственного интеллекта в бизнес-практику. Преимущества и сложности — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Внедрение искусственного интеллекта в бизнес-практику. Преимущества и сложности», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Экспертные системы на основе правил

В 1980-х гг. экспертные системы на основе наборов правил «если – то» были доминирующей технологией ИИ и долгое время широко использовались в коммерческих целях. Сегодня их обычно не считают последним словом техники, но проведенный в 2017 г. опрос Deloitte об осведомленности о когнитивных технологиях показал, что их по-прежнему используют 49 % американских компаний, работающих с ИИ.

Экспертные системы требуют, чтобы эксперты и инженеры знаний разработали набор правил для конкретной области знаний. Они широко распространены, к примеру, в страховом андеррайтинге и банковском кредитном андеррайтинге, но также используются в нетрадиционных областях вроде обжарки кофе в Folgers или приготовлении супов в Campbell's. Они неплохо работают и просты для понимания. Однако, если количество правил велико (обычно больше нескольких сотен) и правила начинают конфликтовать друг с другом, системы не справляются с задачами. Кроме того, если меняется область знаний, приходится менять и все правила, а это сложно и трудоемко.

Системы на основе правил не слишком усовершенствовались с момента своего раннего расцвета, но представители активно применяющих их отраслей (вроде страхования и банковского дела) надеются, что вскоре появится новое поколение технологий на основе правил. Исследователи и поставщики технологий уже обсуждают возможность создания «адаптивных машин обработки правил», которые будут постоянно модифицировать правила на основе новых данных, или комбинаций машин обработки правил с машинным обучением (но все это пока не получило широкого распространения).

Физические роботы

Физическими роботами сегодня никого не удивить, ведь каждый год по всему миру внедряется более 200 000 промышленных роботов. В том или ином качестве физических роботов используют 32 % компаний, руководители которых приняли участие в опросе об осведомленности о когнитивных технологиях. На заводах и складах роботы выполняют такие задачи, как подъем и перемещение грузов, а также сварка и сборка объектов. Ранее они управлялись детализированными компьютерными программами, которые позволяли им выполнять конкретные задачи, но в последнее время роботы более тесно сотрудничают с людьми, а обучать их стало легче, поскольку можно просто пройти с ними весь цикл необходимой задачи. Они также становятся более интеллектуальными по мере того, как в их «мозг» (то есть в операционную систему) встраиваются другие возможности ИИ. Кажется весьма вероятным, что со временем интеллект физических роботов будет улучшен так же, как интеллект других систем.

Роботизированная автоматизация процессов (РАП)

Эта технология выполняет структурированные цифровые задачи (то есть задачи, связанные с информационными системами) так, как если бы их выполнял человек, следующий сценарию или правилам. Не все согласны, что РАП принадлежит к семейству технологий ИИ и когнитивных технологий, поскольку она не слишком интеллектуальна. Однако системы РАП популярны и автоматизированы, а их интеллектуальность растет, поэтому я включаю их в мир ИИ. Иногда их называют цифровой рабочей силой. В сравнении с другими формами ИИ они не слишком дороги и просты в программировании. При этом их работа прозрачна. Если вы умеете пользоваться мышкой, понимаете графические модели технологических процессов и готовы создать несколько бизнес-правил «если – то», вы в состоянии разобраться в этой технологии и, возможно, даже разработать РАП. Настраивать и внедрять такие системы также гораздо проще, чем разрабатывать собственные программы, используя язык программирования.

РАП не задействует роботов – только компьютерные программы на серверах. Опираясь на сочетание рабочего процесса, бизнес-правил и интеграции «уровня представления» с информационными системами, она функционирует как полуинтеллектуальный пользователь этих систем. Порой РАП сравнивают с макрокомандами электронных таблиц, но я считаю такое сравнение некорректным, поскольку РАП может справляться с гораздо более сложными задачами. Ее также сравнивают с инструментами управления бизнес-процессами, которые могут управлять рабочим процессом, но на самом деле технология была создана для того, чтобы документировать и анализировать процесс, а не автоматизировать его [16] Doug Williams, "How Is RPA Different from Other Enteprise Automation Tools Such as BPM/ODM," IBM Consulting Blog, July 10, 2017, https://www.ibm.com/blogs/insights-on-business/gbs-strategy/rpa-different-enterprise-automation-tools-bpmodm/ . .

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Внедрение искусственного интеллекта в бизнес-практику. Преимущества и сложности»

Представляем Вашему вниманию похожие книги на «Внедрение искусственного интеллекта в бизнес-практику. Преимущества и сложности» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Внедрение искусственного интеллекта в бизнес-практику. Преимущества и сложности»

Обсуждение, отзывы о книге «Внедрение искусственного интеллекта в бизнес-практику. Преимущества и сложности» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x