Фейс Куртис - Путь Черепах. Из дилетантов в легендарные трейдеры

Здесь есть возможность читать онлайн «Фейс Куртис - Путь Черепах. Из дилетантов в легендарные трейдеры» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. ISBN: , Жанр: Деловая литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Путь Черепах. Из дилетантов в легендарные трейдеры: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Путь Черепах. Из дилетантов в легендарные трейдеры»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Это первая книга, написанная участником легендарного эксперимента в области трейдинга. Впервые излагаются подробности того, чему и как обучал новичков инициатор эксперимента Ричард Деннис – «Принц Ямы», как его окрестили в биржевых кругах. Вы узнаете, на каких рынках торговали Черепахи, какие тактики входа и выхода они применяли, за какими трендами следовали, как рассчитывали риски, какие ограничения были обязаны соблюдать и почему одни Черепахи потерпели фиаско, а другие заработали миллионы. И главное – почему практический опыт трейдинга в прошлом или его отсутствие не сыграли при этом никакой роли. Полезное чтение как для опытных, так и для начинающих трейдеров. Увлекательное чтение для всех любопытных.

Путь Черепах. Из дилетантов в легендарные трейдеры — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Путь Черепах. Из дилетантов в легендарные трейдеры», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Однако проблема состоит не в том, как много элементов выборки вам нужно. Проблема возникает при оценке прошлого, а именно случаев, когда определенные правила вступали в силу достаточно редко. Поэтому для этих типов правил просто невозможно получить большую выборку. Возьмем, к примеру, поведение на рынке на последней стадии роста ценовых «пузырей». Для этих условий можно придумать правила и даже протестировать их, однако выборка будет слишком мала для принятия решения. В таких случаях важно понимать, что результаты теста не будут иметь ничего общего с тем, что мы могли бы узнать, если бы выборка была больше. Ранее отмеченные мной сезонные явления представляют область, в которой возникают аналогичные проблемы.

Тестируя новые правила для системы, вы должны оценивать, как часто эти правила оказывают влияние на результат. Если за все время проведения теста правило воздействовало на результат всего четыре раза, то у вас нет статистических достоверных оснований, чтобы определить, работает оно или нет. Вполне возможно, что замеченные вами эффекты были вызваны случайными причинами. Одним из решений ситуации является изменение правила для того, чтобы оно вступало в действие чаще, – это увеличит размер выборки, а тем самым статистическую описательную ценность тестов для этого правила.

Помимо размера выборки есть еще две проблемы, которые, однако, зачастую игнорируются:

– Оптимизация под отдельный рынок: гораздо сложнее тестировать с помощью достаточного размера выборки методы оптимизации, предназначенные для каждого отдельного рынка, так как на каждом отдельно взятом рынке существует меньше возможностей для трейдинга.

– Сложные системы: в сложных системах есть много правил. Поэтому со временем становится сложно определить, сколько раз применялось каждое правило, а также каково было его влияние. Таким образом, становится сложнее доверять статистической значимости тестов, проводимых с использованием сложных систем.

По этим причинам я не рекомендую проводить оптимизацию для отдельных рынков и предпочитаю простые идеи, статистическое значение которых гораздо выше.

Назад в будущее

Главный вопрос, интересующий всех, звучит так: «Как можно определить возможный исход будущего реального трейдинга?»

Чтобы ответить на него, нужно понимать факторы, вызывающие потери, необходимость точных показателей и достаточного количества репрезентативных примеров. Исходя из этого, вы можете размышлять об эффектах изменений на рынках и о том, почему даже прекрасные системы, выстроенные опытными трейдерами, достаточно изменчивы с точки зрения отдачи. Реальность такова, что вы не знаете и не можете предсказать, как будет вести себя система. Лучшее, что вы можете сделать, это использовать инструменты, позволяющие определить набор возможных значений, и выявить факторы, влияющие на эти значения.

Удачливые системы

Тот факт, что какая-то система в недавнем прошлом сработала хорошо, может быть связан с простой удачей или идеальными условиями на рынке в тот момент именно для данной системы. В целом хорошо работающим системам свойственно после успешных периодов испытывать плохие времена. Не ждите, что сможете повторить отличные результаты еще раз. Это может случиться, но на это не стоит полагаться. Скорее всего, в ближайшем будущем вам предстоит период частично удачной деятельности.

Параметры вперемешку

Всем желающим начать торговлю по какой-либо системе я предлагаю выполнить следующее упражнение. Возьмите несколько параметров системы и существенно поменяйте их значения, например на 20 или 25 процентов. Выберите точку, расположенную значительно ниже кривых оптимизации, изображенных на рисунках 12-1 и 12-2. Теперь посмотрите на результаты теста. Используя систему прорыва Боллинджера, я решил посмотреть, что произойдет, если мы изменим оптимальные значения с 350 дней и -0,8 в качестве порога выхода на 250 дней и 0,0 соответственно. Такие значения уменьшили RAR% с 59 процентов до 58 процентов, а значение R-cubed сократилось с 3,67 до 2,18 – достаточно значительное снижение. Это только один пример серьезных изменений, которые можно обнаружить при переходе от использования исторических данных к реальному трейдингу на рынке.

Окна повторяющейся оптимизации

Еще одно упражнение, более тесно, чем предыдущее, связанное с практикой перехода от тестирования к трейдингу. Для проведения упражнения выберите дату за истекший 8 – 10-летний период, а затем проведите оптимизацию всех данных до этой даты, используя те же методы оптимизации, что вы использовали бы в обычных условиях при ваших обычных допущениях. Просто представьте себе, что единственные данные, которые у вас есть, – это данные по состоянию на выбранную вами дату. После того как вы определили оптимальные значения параметров, проведите тестирование с включением двух лет после избранной вами даты. Как изменились результаты с учетом последующих лет?

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Путь Черепах. Из дилетантов в легендарные трейдеры»

Представляем Вашему вниманию похожие книги на «Путь Черепах. Из дилетантов в легендарные трейдеры» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Путь Черепах. Из дилетантов в легендарные трейдеры»

Обсуждение, отзывы о книге «Путь Черепах. Из дилетантов в легендарные трейдеры» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x