Таким образом, генетический код, как соответствие триплета оснований той или иной аминокислоте, реализуется не как взаимное узнавание ( рекогниция , для которой не существует физико-химических оснований), а как узнавание одного и того же посредника – белка АРСазы, структура которого имеет соответствующие сайты. Это узнавание должно иметь вполне убедительную стереохимическую основу. И тем не менее, малая величина аминокислот и однотипная стереохимия тРНК представляют серьезные трудности для рекогниции. Справедливости ради стоит, однако, сказать, что тРНК все же несколько отличаются друг от друга – и не только антикодоном: имеют место небольшие нуклеотидные отличия, так что тРНК с разными антикодонами несколько различны и по своей пространственной конфигурации.
Детальному анализу структуры и функции АРСаз посвящены очень основательные обзоры Карла Вѐзе 52; на русском языке о них довольно подробно можно прочесть в популярных статьях 53 замечательного Соровского Образовательного Журнала. Нас интересуют здесь лишь основные характеристики этих ферментов. Википедия – вполне корректно – трактует АРСазу следующим образом:
« Аминоацил-тРНК-синтетаза (АРСаза) – фермент, катализирующий образование аминоацил-тРНК в реакции этерификации определенной аминокислоты с соответствующей ей молекулой тРНК. Для каждой аминокислоты существует своя АРСаза. АРСазы обеспечивают соответствие подготавливаемых ими к встраиванию в белок аминокислот и нуклеотидных триплетов антикодона тРНК, таким образом, обеспечивая правильность происходящего в дальнейшем считывания генетической информации с мРНК при синтезе белков на рибосоме.
На первом этапе происходит активация аминокислоты АТРазой :
аминокислота+ АТР→ аминоацил-AMP +РРi( пирофосфат ).
На втором этапе активированная аминокислота соединяется с соответствующей тРНК :
аминоацил-AMP + тРНК→ аминоацил-тРНК + АМР
Суммарное уравнение двух реакций :
аминокислота + тРНК + ATP→ аминоацил-тРНК + AMP + PPi
Сначала в активном центре синтетазы связываются соответствующая аминокислота и АТФ. Из трѐх фосфатных групп АТФ две отщепляются, образуя молекулу пирофосфата (PPi), а на их место становится аминокислота. Образованное соединение (аминоацил-аденилат) состоит из ковалентно связанных высокоэнергетической связью аминокислотного остатка и АТФ. Энергии, содержащейся в этой связи, хватает на все дальнейшие этапы, необходимые для того, чтобы аминокислотный остаток занял своѐ место в полипептидной цепи (то есть в белке). Аминоацил-аденилаты нестабильны и легко гидролизуются, если диссоциируют из активного центра синтетазы. Когда аминоацил-аденилат сформирован, с активным центром синтетазы связывается 3» -конец тРНК, антикодон которой соответствует активируемой этой синтетазой аминокислоте. Происходит перенос аминокислотного остатка с аминоацил-аденилата на 2» – либо 3» -ОН группу рибозы, входящей в состав последнего на 3» -конце аденина тРНК. Таким образом синтезируется аминоацил-тРНК, то естьтРНК несущая ковалентно присоединѐнный аминокислотный остаток. От аминоацил-аденилата при этом остаѐтся только АМФ. И аминоацил-тРНК, и АМФ освобождаются активным центром.
Каждая из двадцати аминоацил-тРНК-синтетаз должна всегда прикреплять к тРНК только свою аминокислоту, узнавая только одну из 20-ти протеиногенных аминокислот, и не связывая другие похожие молекулы, содержащихся в цитоплазме клетки. Аминокислоты значительно меньше тРНК по размерам, неизмеримо проще по структуре, поэтому их узнавание является значительно большей проблемой, чем узнавание нужной тРНК. В действительности, ошибки имеют место, но их уровень не превышает одной на 10,000 – 100,000 синтезированных аминоацил-тРНК. Некоторые аминокислоты отличаются друг от друга очень слабо, например, лишь одной метильной группой ( I и V, A и G ). Для таких случаев во многих аминоацил-тРНК-синтетазах эволюционировали механизмы, избирательно расщепляющие ошибочно синтезированные продукты. Процесс их распознавания и гидролиза называют редактированием…
Все аминоацил-тРНКсинтетазы произошли от двух предковых форм, и объединены на основе структурного сходства в два класса. Эти классы отличаются по доменной организации, структуре главного (амино-ацилирующего) домена, способу связывания и аминоацилирования тРНК. Аминоацилирующий домен аминоацил-тРНК синтетаз 1-го класса образован так называемой укладкой Россмана, в основе которой лежит параллельный β-лист. Ферменты 1-го класса являются в большинстве случаев мономерами. 76-й аденозин тРНК они аминоацилируют по 2» -ОН группе. Ферменты 2-го класса имеют в основе структуры аминоацилирующего домена антипараллельный β-лист. Как правило, они являются димерами, то есть имеют четвертичную структуру. За исключением фенилаланил-тРНКсинтетазы все они аминоацилируют 76-й аденозин тРНК по 3» -ОН группе. Каждый класс дополнительно делится на 3 подкласса – a, b и c по структурному сходству…
Читать дальше
Конец ознакомительного отрывка
Купить книгу