Денис Соломатин - Математические модели в естественнонаучном образовании. Том I

Здесь есть возможность читать онлайн «Денис Соломатин - Математические модели в естественнонаучном образовании. Том I» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Год выпуска: 2022, Жанр: Биология, Медицина, Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Математические модели в естественнонаучном образовании. Том I: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Математические модели в естественнонаучном образовании. Том I»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Начало XXI века ознаменовано выходом в свет прекрасной книги Mathematical Models in Biology An Introduction / Elizabeth S. Allman, University of Southern Maine, John A. Rhodes, Bates College, Maine, содержащей обзор достижений века предшествующего, которая легла в основу данного издания, поэтому если уже знакомы с ней, то мне вас практически нечем удивить. В противном случае – добро пожаловать в чудесный мир тесного переплетения идей биологии, криптографии, абстрактной общей алгебры, конкретной дискретной математики и вероятностной математической статистики, на пользу бурно развивающейся ныне биоматематики. Хотите узнать в чём практический смысл вычисления собственных значений и собственных векторов матриц? Как определяется доля населения, которая должна быть успешно вакцинирована для обеспечения коллективного иммунитета? Как из структуры ДНК можно почерпнуть принципы СУВ? И много-многое другое? Тогда эта книга именно для вас.

Математические модели в естественнонаучном образовании. Том I — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Математические модели в естественнонаучном образовании. Том I», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Это означает, что значения картинка 385 близкие к равновесию будут иметь отклонение от равновесия, уменьшающееся примерно в 0.3 раза с каждым последующим шагом времени. Поэтому небольшие отклонение от равновесия в дальнейшем уменьшаются и картинка 386 действительно стабильное значение.

Можно смотреть на число 0.3 как на «коэффициент растяжения», который говорит о том, насколько стремительно меняются отклонения от равновесия с течением времени. В данном примере, поскольку растягиваемся в менее чем 1 раз, на деле имеет место сжатие.

Процесс, описанный в примере выше, называется линеаризацией модели в равновесии, потому что сначала фокусируем внимание вблизи равновесия путем линейной замены Математические модели в естественнонаучном образовании Том I - изображение 387, а затем игнорируем члены степени больше 1 в картинка 388. Остается только линейная модель, аппроксимирующая исходную модель. Линейные модели, как видели, легко понять, потому что они производят либо экспоненциальный рост, либо распад.

Вопросы для самопроверки:

– Выполните аналогичный анализ для другого равновесия этой модели, чтобы показать, что оно нестабильно. Каким будет коэффициент растяжения, на который расстояния от точки равновесия растут с каждым шагом времени?

В результате аналогичного анализа в окрестности 0 обнаружится, что линеаризация при Математические модели в естественнонаучном образовании Том I - изображение 389 дает Математические модели в естественнонаучном образовании Том I - изображение 390. Поэтому возмущения от этого равновесия со временем растут, следовательно, картинка 391 неустойчиво. В общем случае, когда коэффициент растяжения больше 1 по абсолютной величине, равновесие нестабильно. И наоборот, когда оно меньше 1 по абсолютной величине, равновесие стабильно.

Из курса математического анализа известно, что вышеописанный процесс линеаризации напоминает аппроксимацию графика функции по касательной прямой. Развивая эту идею коэффициент растяжения в предыдущем примере можно было бы выразить как отношение Математические модели в естественнонаучном образовании Том I - изображение 392 при бесконечно малых значениях Математические модели в естественнонаучном образовании Том I - изображение 393. Но Математические модели в естественнонаучном образовании Том I - изображение 394, где Математические модели в естественнонаучном образовании Том I - изображение 395 уравнение, определяющее модель. Заметим, что в последнем равносильном преобразовании использовалось равенство Математические модели в естественнонаучном образовании Том I - изображение 396. Поскольку интересны лишь значения Математические модели в естественнонаучном образовании Том I - изображение 397, очень близкие к Математические модели в естественнонаучном образовании Том I - изображение 398, то последнее выражение очень близко к предельному значению Математические модели в естественнонаучном образовании Том I - изображение 399. Но этот предел по определению является не чем иным, как производной Математические модели в естественнонаучном образовании Том I - изображение 400, производной функции, определяющей модель. Итак, мы доказали следующую теорему.

Теорема. Если модель Математические модели в естественнонаучном образовании Том I - изображение 401 имеет равновесное значение Математические модели в естественнонаучном образовании Том I - изображение 402, то Математические модели в естественнонаучном образовании Том I - изображение 403 подразумевает, что значение Математические модели в естественнонаучном образовании Том I - изображение 404 нестабильно, а при Математические модели в естественнонаучном образовании Том I - изображение 405 , будет Математические модели в естественнонаучном образовании Том I - изображение 406 стабильным значением. Если же Математические модели в естественнонаучном образовании Том I - изображение 407, то этой информации недостаточно для определения стабильности и необходимо проводить дополнительное исследование.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Математические модели в естественнонаучном образовании. Том I»

Представляем Вашему вниманию похожие книги на «Математические модели в естественнонаучном образовании. Том I» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Математические модели в естественнонаучном образовании. Том I»

Обсуждение, отзывы о книге «Математические модели в естественнонаучном образовании. Том I» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x