Глава 3. «Включаем» правильные гены!
1. Ornish D., Magbanua M. J., Weidner G., Weinberg V., Kemp C., Green C., Mattie M. D., Marlin R., Simko J., Shinohara K., Haqq C. M., & Carroll P. R. (2008). Changes in prostate gene expression in men undergoing an intensive nutrition and lifestyle intervention. Proceedings of the National Academy of Sciences of the United States of America, 105(24), 8369–8374. doi: 10.1073/pnas.0803080105.
2. Madaniyazi L., Li S., Li S., Guo Y. Candidate gene expression in response to low-level air pollution. Environ Int. 2020 Jul; 140:105610. doi: 10.1016/j.envint.2020.105610. Epub 2020 Apr 2. PMID: 32248990.
3. Wu S., Zhu J., Li Y., et al. Dynamic effect of di-2-(ethylhexyl) phthalate on testicular toxicity: epigenetic changes and their impact on gene expression. Int J Toxicol. 2010;29(2):193–200. doi: 10.1177/1091581809355488.
4. Anway M. D., Cupp A. S., Uzumcu M., Skinner M. K. Epigenetic transgenerational actions of endocrine disruptors and male fertility [published correction appears in Science. 2010 May 7;328(5979):690]. Science. 2005;308(5727):1466–1469. doi: 10.1126/science.1108190.
5. Reuben A., Sugden K., Arseneault L., et al. A ssociation of Neighborhood Disadvantage in Childhood with DNA Methylation in Young Adulthood. JAMA Netw Open. 2020;3(6): e206095. doi: 10.1001/jamanetworkopen.2020.6095.
6. Weaver I. C. G., Meaney M. J., Szyf M. Maternal care effects on the hippocampal transcriptome and anxiety-mediated behaviors in the offspring that are reversible in adulthood. PNAS Feb 2006, 103 (9) 3480–3485. doi: 10.1073/pnas.0507526103.
7. Waterland R. A., Jirtle R. L. (2003). Transposable elements: targets for early nutritional effects on epigenetic gene regulation. Molecular and cellular biology, 23(15), 5293–5300. doi: 10.1128/mcb.23.15.5293–5300.2003.
8. Lumey L. H., Stein A. D., Kahn H. S., van der Pal-de Bruin K. M., Blauw G. J., Zybert P. A., Susser E. S. Cohort Profile: The Dutch Hunger Winter Families Study, International Journal of Epidemiology, Volume 36, Issue 6, December 2007, Pages 1196–1204. doi: 10.1093/ije/dym126.
9. Ravelli G-P., Stein Z. A., Susser M. W. Obesity in Young Men after Famine Exposure in Utero and Early Infancy. N Engl J Med 1976; 295:349–353. Doi: 10.1056/NEJM197608122950701.
10. Heijmans B. T., Tobi E. W., Stein A. D., Putter H., Blauw G. J., Susser E. S., Slagboom P. E., Lumey L. H. (2008). Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proceedings of the National Academy of Sciences of the United States of America, 105(44), 17046–17049. doi: 10.1073/pnas.0806560105.
11. Veenendaal M. V. E., Painter R. C., de Rooij S. R., Bossuyt P. M. M., van der Post J. A. M., Gluckman P. D., Hanson M. A., Roseboom T. J . Transgenerational effects of prenatal exposure to the 1944–45 Dutch famine. BJOG. 2013 Apr;120(5):548–53. doi: 10.1111/1471–0528.12136.
12. Joehanes R., Just A. C., Marioni R. E., et al. Epigenetic Signatures of Cigarette Smoking. Circ Cardiovasc Genet. 2016;9(5):436–447. doi: 10.1161/CIRCGENETICS.116.001506.
13. Northstone K., Golding J., Davey Smith G., Miller L. L., Pembrey M. Prepubertal start of father’s smoking and increased body fat in his sons: further characterisation of paternal transgenerational responses. Eur J Hum Genet. 2014;22(12):1382–1386. doi: 10.1038/ejhg.2014.31.
14. Всемирная организация здравоохранения. Табак. https://www.who.int/ru/news-room/fact-sheets/detail/tobacco.
15. Gangisetty O., Sinha R., Sarkar D. K. Hypermethylation of Proopiomelanocortin and Period 2 Genes in Blood Are Associated with Greater Subjective and Behavioral Motivation for Alcohol in Humans. Alcohol Clin Exp Res. 2019;43(2):212–220. doi: 10.1111/acer.13932.
16. Mews P., Egervari G., Nativio R., et al. Alcohol metabolism contributes to brain histone acetylation. Nature. 2019;574(7780):717–721. doi: 10.1038/s41586–019–1700–7.
17. Garaycoechea J., Crossan G., Langevin F., et al. Alcohol and endogenous aldehydes damage chromosomes and mutate stem cells. Nature 553, 171–177 (2018). doi: 10.1038/nature25154.
18. Murphy S. K., Itchon-Ramos N., Visco Z., et al. Cannabinoid exposure and altered DNA methylation in rat and human sperm. Epigenetics. 2018;13(12):1208–1221. doi: 10.1080/15592294.2018.1554521.
19. Schrott R., Acharya K., Itchon-Ramos N., et al. Cannabis use is associated with potentially heritable widespread changes in autism candidate gene DLGAP2 DNA methylation in sperm. Epigenetics. 2020;15(1–2):161–173. doi: 10.1080/15592294.2019.1656158.
20. Le Q., Yan B., Yu X. et al. Drug-seeking motivation level in male rats determines offspring susceptibility or resistance to cocaine-seeking behaviour. Nat Commun 8, 15527 (2017). doi: 10.1038/ncomms15527.
21. Lindholm M. E., Marabita F., Gomez-Cabrero D., et al. An integrative analysis reveals coordinated reprogramming of the epigenome and the transcriptome in human skeletal muscle after training. Epigenetics. 2014;9(12):1557–1569. doi: 10.4161/15592294.2014.982445.
22. Rönn T., Volkov P., Davegårdh C., Dayeh T., Hall E., Olsson A. H., et al. (2013) A Six Months Exercise Intervention Influences the Genome-wide DNA Methylation Pattern in Human Adipose Tissue. PLoS Genet 9(6): e1003572. doi:0.1371/journal.pgen.1003572.
23. Buric I., Farias M., Jong J., Mee C., Brazil I. A. What Is the Molecular Signature of Mind-Body Interventions? A Systematic Review of Gene Expression Changes Induced by Meditation and Related Practices. Front Immunol. 2017;8:670. Published 2017 Jun 16. doi: 10.3389/fimmu.2017.00670.
24. Graff M., Scott R. A., Justice A. E., Young K. L., Feitosa M. F., Barata L., et al. (2017) Genome-wide physical activity interactions in adiposity A meta-analysis of 200,452 adults. PLoS Genet 13(4): e1006528. doi: 10.1371/journal.pgen.1006528.
25. Misiewicz Z., Iurato S., Kulesskaya N., et al. Multi-omics analysis identifies mitochondrial pathways associated with anxiety-related behavior. PLoS Genet. 2019;15(9): e1008358. Published 2019 Sep 26. doi: 10.1371/journal.pgen.1008358.
26. Kiecolt-Glaser J. K., Loving T. J., Stowell J. R., et al. Hostile marital interactions, proinflammatory cytokine production, and wound healing. Arch Gen Psychiatry. 2005;62(12):1377–1384. doi: 10.1001/archpsyc.62.12.1377.
27. Kaliman P., Alvarez-López M. J., Cosín-Tomás M., Rosenkranz M. A., Lutz A., Davidson R. J. Rapid changes in histone deacetylases and inflammatory gene expression in expert meditators. Psychoneuroendocrinology. 2014;40:96–107. doi: 10.1016/j.psyneuen.2013.11.004.
28. Dusek J. A., Otu H. H., Wohlhueter A. L., et al. Genomic counter-stress changes induced by the relaxation response [published correction appears in PLoS One. 2017 Feb 21;12 (2): e0172845]. PLoS One. 2008;3(7): e2576. Published 2008 Jul 2. doi: 10.1371/journal.pone.0002576.
Часть II. Сила мышления
1. Kaptchuk T. J., Miller F. G. Placebo Effects in Medicine. N Engl J Med 2015; 373:8–9. doi: 10.1056/NEJMp1504023.
2. Emmons R. A., McCullough M. E. Counting blessings versus burdens: an experimental investigation of gratitude and subjective well-being in daily life. J Pers Soc Psychol. 2003;84(2):377–389. doi: 10.1037//0022–3514.84.2.377.
3. Tello M. A positive mindset can help your heart. Harvard Health Blog / Harvard Health Publishing. https://www.health.harvard.edu/blog/a-positive-mindset-can-help-your-heart-2019021415999.
Читать дальше
Конец ознакомительного отрывка
Купить книгу