Есть гипотеза, что первые на Земле живые организмы были именно грамотрицательными бактериями, и только у их потомков вторая — наружная — мембрана исчезла [50] Cavalier-Smith T. Cell evolution and Earth history: stasis and revolution // Philosophical Transactions of the Royal Society of London, B: Biological Sciences , 2006, V. 361, № 1470, 969–1006.
. К сожалению, эта красивая идея слабо поддерживается молекулярно-биологическими данными, поэтому сейчас она не слишком популярна. Но независимо от того, верна она или нет, эволюционный зигзаг тут получился очень занятный.
— Как вообще может анаэроб развиться в сложный многоклеточный организм и тем более — двигаться настолько быстро, как эта тварь? Подобный уровень активности жрет массу АТФ.
— Может, они не используют АТФ, — предположила Бейтс, пока я полез за справкой в КонСенсус: аденозинтрифосфат, источник энергии для клетки.
Питер Уоттс. Ложная слепота
Вспомним, как устроена молекула бензола. Она состоит из шести атомов углерода, соединенных в кольцо таким образом, что одинарные углерод-углеродные связи чередуются с двойными (см. главу 1). Свободные связи в бензоле, как и всюду, заняты атомами водорода. Его краткая формула — C 6H 6. Именно эта молекула когда-то напомнила Фридриху Августу Кекуле кольцо из переплетающихся змей. Молекула бензола прекрасна и самодостаточна — казалось бы, что в ней можно поменять?
Кое-что можно. Например, заменить один из атомов углерода на атом азота. Азот трехвалентен, и это вполне позволяет ему встроиться в бензольное кольцо (только без водорода при нем). Тогда получается кольцевая молекула с пятью атомами углерода, одним атомом азота и тремя двойными связями, которая называется пиридин.
Можно заменить атомами азота и два атома углерода (не соседних, а через один). Получится кольцо с тремя двойными связями, четырьмя атомами углерода и двумя атомами азота. Эта молекула называется пиримидин (см. рис. 7.1). И вот она в биологии очень важна.
Присоединив к пиримидиновому ядру две гидроксильные группы (−OH), мы получим соединение, которое называется урацил. Полное химическое название урацила — 2,4-дигидроксипиримидин. Члены пиримидинового кольца принято нумеровать, считая от одного из атомов азота.
Если дополнительно присоединить к урацилу еще и метильную группу (−СH 3), получится новое соединение — тимин. А если заменить в урациле одну из гидроксильных групп на аминогруппу (−NH 2), то получится цитозин. Полное название тимина — 5-метил-2,4-дигидроксипиримидин. А полное название цитозина — 2-гидрокси-4-аминопиримидин. Запоминать эти названия (как и нумерацию, на которой они основаны) ни в коем случае не надо. Но они полезны тем, что в случае надобности позволяют безошибочно восстановить всю формулу нужного вещества. Честно говоря, сомнительно, что любой биолог помнит формулы урацила, тимина и цитозина наизусть. Но вот о том, что такие вещества существуют, знает абсолютно каждый, кто имеет к биологии хоть какое-то отношение. Знаем теперь и мы.
Возможна и другая, более сложная молекула, где к пиримидиновому шестичленному циклу добавлено еще одно кольцо — пятичленное, с двумя атомами азота. Такое соединение называется пурином (см. рис. 7.2). Молекула пурина включает в общей сложности пять атомов углерода и четыре атома азота.
Есть довольно много соединений, где к пуриновому ядру присоединяются различные боковые цепи. Например, именно к производным пурина относится такое популярнейшее вещество, как кофеин. В молекуле кофеина к пуриновому ядру присоединены две гидроксильные группы и три метильные.
Но для биологов гораздо важнее два других пуриновых соединения. Одно из них — аденин, молекула которого состоит из пуринового ядра с присоединенной к нему аминогруппой. Второе — гуанин, в котором есть аминогруппа (не там, где у аденина) и гидроксильная группа.
Полные названия аденина и гуанина, соответственно, 6-аминопурин и 2-амино-6-гидроксипурин. Повторимся, что эти названия даются тут не для того, чтобы кто-нибудь пытался их запомнить, а просто ради общего представления о том, как этой номенклатурой в принципе можно пользоваться. Дальше нам это еще пригодится.
Пуриновые и пиримидиновые молекулы только что описанного типа называют азотистыми основаниями , потому что входящий в них азот проявляет основные свойства, подобно аммиаку (см. главу 1). Урацил, тимин, цитозин, аденин и гуанин — это азотистые основания. Урацил, тимин и цитозин — пиримидиновые азотистые основания, а аденин и гуанин — пуриновые. Вообще-то химикам известны десятки азотистых оснований, но для понимания основ биологии вполне хватит этих пяти. Другие азотистые основания встречаются в живых организмах реже, и значение их там гораздо меньше.
Читать дальше
Конец ознакомительного отрывка
Купить книгу