Сергей Ястребов - От атомов к древу. Введение в современную науку о жизни

Здесь есть возможность читать онлайн «Сергей Ястребов - От атомов к древу. Введение в современную науку о жизни» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2018, ISBN: 2018, Издательство: Альпина нон-фикшн, Жанр: Биология, sci_biochem, sci_popular, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

От атомов к древу. Введение в современную науку о жизни: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «От атомов к древу. Введение в современную науку о жизни»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Из чего состоят живые тела и при чем тут углерод? Что такое генетический код, кто такие вирусы, как устроено эволюционное древо и почему произошел кембрийский взрыв? Предлагаемая книга дает актуальные ответы на эти и многие другие вопросы. «Фокусом» рассказа служит эволюция жизни на Земле: автор считает, что только под этим углом зрения самые разные биологические проблемы обретают единый смысл. Книга состоит из четырех частей, темы которых последовательно расширяются: «Химия жизни», «Механизм жизни», «Древо жизни» и «История жизни».
Рекомендуется широкому кругу читателей, всерьез интересующихся современной биологией.

От атомов к древу. Введение в современную науку о жизни — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «От атомов к древу. Введение в современную науку о жизни», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Однако волновая теория Гюйгенса объясняла далеко не все световые явления. Настоящую революцию в оптике совершил французский физик Огюстен Жан Френель, сделавший одну очень важную поправку к теории Гюйгенса: свет — не продольная волна, а поперечная. В отличие от продольной волны, в поперечной волне колебания идут перпендикулярно линии ее распространения. Такова, например, самая обычная волна на поверхности воды, состоящая из бегущих гребней и впадин. В световой волне колебания устроены так же, с той разницей, что они не механические, а электромагнитные (Френель этого не знал, но созданная им теория световых волн все равно оказалась верной).

Теперь сделаем следующий шаг. В механической волне, на поверхности воды, колебания идут только в одной плоскости: вверх-вниз. Но для поперечных волн в целом это не более чем частный случай. Представим, например, что мы привязали длинную веревку к гвоздю в стене и дергаем ее за свободный кончик, заставляя колебаться. Эти колебания будут типичными поперечными волнами. В зависимости от того, как именно мы в данный момент дергаем, веревка может колебаться и вверх-вниз, и вправо-влево, и наискосок. Плоскостей колебаний будет много. Так вот, обычный свет (например, свет Солнца или свет настольной лампы) устроен в этом отношении точно так же.

Итак, свет — это поперечная волна, где электромагнитные колебания обычно происходят сразу во многих плоскостях. Общего у этих плоскостей только то, что все они «нанизаны» на луч, по которому волна распространяется. Однако бывает и свет с колебаниями только в одной плоскости — он называется поляризованным . Такой свет можно получить, например, если пропустить обычный солнечный луч сквозь особый кристалл-поляризатор (см. рис. 4.2А). Человеческий глаз не отличает поляризованный свет от обычного, но приборы отличают (как и глаза многих животных, от пчел до осьминогов и птиц). Плоскость поляризации данного луча света остается постоянной, если только он не встретится с какими-нибудь оптическими преградами.

Теперь у нас хватает понятий чтобы высказать ключевое утверждение Кристаллы и - фото 24

Теперь у нас хватает понятий, чтобы высказать ключевое утверждение. Кристаллы и растворы некоторых химических соединений обладают способностью поворачивать плоскость поляризации пропущенного сквозь них света на строго определенный в каждом случае угол (см. рис. 4.2Б). Это свойство называется оптической активностью . Как правило, оптически активными являются те вещества, у которых есть хиральность. Если у хирального соединения два стереоизомера, то их кристаллы или растворы поворачивают плоскость поляризации света на один и тот же угол, но в разные стороны. Изомер, который поворачивает плоскость поляризации по часовой стрелке, принято называть правовращающим , а против часовой — левовращающим , при этом «по часовой» или «против» определяется исходя из того, что луч света направлен воображаемому наблюдателю в лицо.

Для краткости правовращающие изомеры обозначают буквой D (от лат. dexter, «правый»), а левовращающие — буквой L (от лат. laevus, «левый»). Например, два стереоизомера аланина кратко называются D-аланином и L-аланином. Все без исключения белки состоят только из L-изомеров аминокислот. Нарушить это правило невозможно: ферменты, синтезирующие белки, несовместимы с D-аминокислотами и не могут их захватывать. Таким образом, все белки на Земле обладают полной хиральной чистотой. Вот это — по-настоящему важный факт, о котором неплохо бы поговорить подробнее.

Загадка левого вращения

Хиральная чистота, она же гомохиральность, — одна из главных особенностей, отличающих живые системы от неживых. Это касается не только аминокислот, но и других биологически активных соединений, у которых есть стереоизомерия (а есть она у многих). В подавляющем большинстве «обычных» химических реакций D- и L-изомеры синтезируются поровну, и разделить их потом трудно. Но в живых телах любая важная группа веществ, как правило, представлена или только L-формами, или только D-формами. Как они там разделяются, в целом понятно — с помощью ферментов, каждый из которых распознает или L-, или D-форму своего субстрата и работает только с ней. В неживых системах механизмов такого разделения или нет вовсе, или они гораздо менее эффективны.

Хиральная чистота живых организмов — широко известное явление. Доходит уже и до того, что она становится темой псевдонаучных спекуляций. Вспомним пример с глутаматом — аминокислотой, которая используется как пищевая добавка и которую часто без серьезных оснований объявляют вредной для здоровья (см. главу 3). Миф об этом вреде частично основан на утверждении, что природный и синтетический глутамат — это разные стереоизомеры, один полезный, а другой опасный. Сейчас у нас вполне достаточно знаний, чтобы понять, почему это глупость.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «От атомов к древу. Введение в современную науку о жизни»

Представляем Вашему вниманию похожие книги на «От атомов к древу. Введение в современную науку о жизни» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «От атомов к древу. Введение в современную науку о жизни»

Обсуждение, отзывы о книге «От атомов к древу. Введение в современную науку о жизни» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x