Сергей Ястребов - От атомов к древу. Введение в современную науку о жизни

Здесь есть возможность читать онлайн «Сергей Ястребов - От атомов к древу. Введение в современную науку о жизни» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2018, ISBN: 2018, Издательство: Альпина нон-фикшн, Жанр: Биология, sci_biochem, sci_popular, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

От атомов к древу. Введение в современную науку о жизни: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «От атомов к древу. Введение в современную науку о жизни»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Из чего состоят живые тела и при чем тут углерод? Что такое генетический код, кто такие вирусы, как устроено эволюционное древо и почему произошел кембрийский взрыв? Предлагаемая книга дает актуальные ответы на эти и многие другие вопросы. «Фокусом» рассказа служит эволюция жизни на Земле: автор считает, что только под этим углом зрения самые разные биологические проблемы обретают единый смысл. Книга состоит из четырех частей, темы которых последовательно расширяются: «Химия жизни», «Механизм жизни», «Древо жизни» и «История жизни».
Рекомендуется широкому кругу читателей, всерьез интересующихся современной биологией.

От атомов к древу. Введение в современную науку о жизни — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «От атомов к древу. Введение в современную науку о жизни», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Теперь сравним все четыре наших соединения. Молекулу метана можно вертеть как угодно, все четыре заместителя при углероде там абсолютно одинаковы. В молекуле хлорметана один из этих заместителей отличается от других (хлор), но молекулу можно вращать вокруг связи, на которой он сидит. В молекуле дихлорметана вращательная симметрия исчезает. Два атома водорода (которые можно поменять местами) торчат там направо и налево от плоскости, задаваемой двумя атомами хлора (которые тоже можно поменять местами, и от этого ничего не изменится). И наконец, в молекуле фторхлорметана атомы, задающие плоскость, тоже разные. Единственный элемент симметрии, остающийся в этой молекуле, — одинаковые атомы водорода, которые все еще можно свободно поменять местами, оставив всю молекулу на месте. Никакие другие операции симметрии для фторхлорметана недоступны.

Итак, мы видим, что в ряду метан — хлорметан — дихлорметан — фторхлорметан мощность симметрии последовательно уменьшается.

И тут возникает вполне естественный вопрос: а можно ли придумать такую органическую молекулу, в которой никаких элементов симметрии не будет совсем? Нарисовав несколько произвольных формул на листе бумаги, любой желающий убедится, что это не так-то просто. Однако все же можно.

Посмотрим на ситуацию заново. Мы знаем, что валентность углерода равна четырем. Это означает, что к атому углерода можно присоединить ковалентными связями четыре радикала, как одинаковых, так и разных. Ведь что мы, по сути, только что видели? Для начала — молекулу, в которой с углеродом соединены четыре одинаковых радикала (AAAA). В другой молекуле было три радикала одного типа и один — другого (AAAB). В третьей — два радикала одного типа и два другого типа (AABB). И наконец, в четвертой молекуле было два одинаковых радикала и два разных (AABC). Можно убедиться, что во всех четырех структурах есть те или иные элементы симметрии. Там есть радикалы, которые можно свободно поменять местами, и молекула останется во всех смыслах той же самой.

Дело меняется, если присоединить к атому углерода четыре разных радикала (ABCD). Реальный пример такого соединения — бромфторхлорметан (CHFClBr). Вот тут получится молекула, лишенная элементов симметрии полностью. В ней нет радикалов, которые можно было бы поменять местами, оставив молекулу той же самой. Иными словами, ни одной операции симметрии для этой молекулы не существует. Такая структура называется диссимметричной (см. рис. 4.1Б).

Хиральность

Явление диссимметрии молекул открыл Луи Пастер, великий французский химик и биолог. По Пастеру, диссимметричной называется такая фигура, которая не может быть совмещена со своим зеркальным отображением. Например, никакими поворотами нельзя совместить правую и левую руку. (Чтобы совсем наглядно убедиться в этом, можно покрутить во все стороны правую и левую перчатки и попытаться наложить их друг на друга.) Какую из двух зеркально-симметричных форм называть правой, а какую левой, в общем случае абсолютно безразлично, это можно выбрать хоть случайно.

Само свойство, наличествующее у объекта зеркально-симметричных модификаций, знаменитый английский физик Уильям Томсон, барон Кельвин, назвал хиральностью . Слово это происходит от греческого χειρ — «рука». Таким образом, «хиральность» буквально значит «рукость». Смысл термина простой: зеркально-симметричные формы хирального объекта нельзя совместить так же, как правую и левую руку.

Итак, мы фактически только что показали, что любая диссимметричная фигура по определению обладает хиральностью. Причем с точки зрения своей физической природы эта фигура может быть чем угодно, от галактики до молекулы. Прямо сейчас нам интересны именно молекулы, и в первую очередь органические. А тут действует простое общее правило. Органическая молекула обладает хиральностью, если в ней есть хотя бы один атом углерода, с которым связаны четыре разных радикала (любых). Такой атом углерода принято называть асимметрическим атомом .

Если среди четырех радикалов, присоединенных к атому углерода, есть хотя бы два одинаковых, значит, этот атом уж точно не асимметрический. Например, ни в метане, ни в хлорметане, ни в дихлорметане, ни во фторхлорметане атом углерода асимметрическим не является. И соответственно, никакой хиральности там нет. Иное дело — бромфторхлорметан, где углерод имеет четыре разных радикала: атом водорода (H), атом фтора (F), атом хлора (Cl) и атом брома (Br). Поэтому бромфторхлорметан обладает хиральностью. Эта молекула существует в двух зеркально-симметричных формах, которые никакими поворотами не могут быть сведены одна к другой, хотя набор как атомов, так и связей между ними там совершенно одинаков.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «От атомов к древу. Введение в современную науку о жизни»

Представляем Вашему вниманию похожие книги на «От атомов к древу. Введение в современную науку о жизни» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «От атомов к древу. Введение в современную науку о жизни»

Обсуждение, отзывы о книге «От атомов к древу. Введение в современную науку о жизни» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x