Graham L. E. et al. Aeroterrestrial Coleochaete (Streptophyta, Coleochaetales) models early plant adaptation to land // American Journal of Botany , 2012, V. 99, № 1, 130–144.
Пономаренко А. Г. Основные события в эволюции биосферы // Проблемы доантропогенной эволюции биосферы. — М.: Наука, 1993.
Kenrick B. Alternation of generations in land plants: new phylogenetic and palaeobotanical evidence // Biological Reviews , 1994, V. 69, № 3, 293–330.
Graham L. E., Cook M. E., Busse J. S. The origin of plants: body plan changes contributing to a major evolutionary radiation // Proceedings of the National Academy of Sciences , 2000, V. 97, № 9, 4535–4540.
Журавлев А. Ю. Ранняя история Metazoa — взгляд палеонтолога // Журнал общей биологии. 2014. Т. 75. № 6, 411–465.
Fritzsch B., Straka H. Evolution of vertebrate mechanosensory hair cells and inner ears: toward identifying stimuli that select mutation driven altered morphologies // Journal of Comparative Physiology A , 2014, V. 200, № 1, 5–18.
Pena J. F. et al. Conserved expression of vertebrate microvillar gene homologs in choanocytes of freshwater sponges // EvoDevo , 2016, V. 7, № 1, 13.
James T. Y., Berbee M. L. No jacket required — new fungal lineage defies dress code // Bioessays , 2012, V. 34, № 2, 94–102.
Karpov S. A. et al. Obligately phagotrophic aphelids turned out to branch with the earliest-diverging fungi // Protist , 2013, V. 164, № 2, 195–205.
Karpov S. A. et al. Morphology, phylogeny, and ecology of the aphelids (Aphelidea, Opisthokonta) and proposal for the new superphylum Opisthosporidia // Frontiers in Microbiology , 2014, V. 5, 112.
Mendoza L., Taylor J. W., Ajello L. The class Mesomycetozoea: a heterogeneous group of microorganisms at the animal-fungal boundary // Annual Reviews in Microbiology , 2002, V. 56, № 1, 315–344.
Suga H., Ruiz-Trillo I. Development of ichthyosporeans sheds light on the origin of metazoan multicellularity // Developmental Biology , 2013, V. 377, № 1, 284–292.
Paps J., Ruiz-Trillo I. Animals and their unicellular ancestors // eLS , 2010.
Sebe-Pedros A. et al. Unexpected repertoire of metazoan transcription factors in the unicellular holozoan Capsaspora owczarzaki // Molecular Biology and Evolution , 2010, V. 28, № 3, 1241–1254.
Sebe-Pedros A., Ruiz-Trillo I. Evolution and Classification of the T-Box Transcription Factor Family // Current Topics in Developmental Biology, 2017, V. 122, 1–26.
Sebe-Pedros A. et al. Early evolution of the T-box transcription factor family // Proceedings of the National Academy of Sciences , 2013, V. 110, № 40, 16050–16055.
Mikhailov K. V. et al. The origin of Metazoa: a transition from temporal to spatial cell differentiation // Bioessays , 2009, V. 31, № 7, 758–768.
Paps J. et al. Molecular phylogeny of unikonts: new insights into the position of apusomonads and ancyromonads and the internal relationships of opisthokonts // Protist , 2013, V. 164, № 1, 2–12.
Sebe-Pedros A., Degnan B. M., Ruiz-Trillo I. The origin of Metazoa: a unicellular perspective // Nature Reviews. Genetics , 2017, V. 18, 498–512.
James T. Y. et al. Reconstructing the early evolution of Fungi using a six-gene phylogeny // Nature , 2006, V. 443, 818–822.
Xu H. et al. The α-aminoadipate pathway for lysine biosynthesis in fungi // Cell Biochemistry and Biophysics , 2006, V. 46, № 1, 43–64.
Vogel H. J. Distribution of lysine pathways among fungi: evolutionary implications // The American Naturalist , 1964, V. 98, № 903, 435–446.
Moroz L. L. On the independent origins of complex brains and neurons // Brain, Behavior and Evolution , 2009, V. 74, № 3, 177–190.
Moroz L. L. et al. The ctenophore genome and the evolutionary origins of neural systems // Nature , 2014, V. 510, № 7503, 109–114.
Jekely G., Paps J., Nielsen C. The phylogenetic position of ctenophores and the origin (s) of nervous systems // EvoDevo , 2015, V. 6, № 1, 1.
Малахов В. В. Симметрия и щупальцевый аппарат книдарий // «Биология моря», 2016, т. 42, № 4, 249–259.
Holland P. W. H. Did homeobox gene duplications contribute to the Cambrian explosion? // Zoological Letters , 2015, V. 1, № 1, 1.
Adl et al. , 2005.
Butterfield N. J. Early evolution of the Eukaryota // Palaeontology , 2015, V. 58, № 1, 5–17.
Burki F. et al. Phylogenomics reshuffles the eukaryotic supergroups // PloS One, 2007, V. 2, № 8, e790.
Hackett J. D. et al. Phylogenomic analysis supports the monophyly of cryptophytes and haptophytes and the association of rhizaria with chromalveolates // Molecular Biology and Evolution , 2007, V. 24, № 8, 1702–1713.
He D. et al. Reducing long-branch effects in multi-protein data uncovers a close relationship between Alveolata and Rhizaria // Molecular Phylogenetics and Evolution , 2016, V. 101, 1–7.
Adl et al. , 2012.
Burki F. et al. The evolutionary history of haptophytes and cryptophytes: phylogenomic evidence for separate origins // Proceedings of the Royal Society of London, B: Biological Sciences , 2012, rspb20112301.
Cavalier-Smith T. Kingdoms Protozoa and Chromista and the eozoan root of the eukaryotic tree // Biology Letters , 2010, V. 6, № 3, 342–345.
Cavalier-Smith T. Protist phylogeny and the high-level classification of Protozoa // European Journal of Protistology , 2003, V. 39, № 4, 338–348.
Stechmann A., Cavalier-Smith T. The root of the eukaryote tree pinpointed // Current Biology , 2003, V. 13, № 17, R665 — R666.
Cavalier-Smith T. Megaphylogeny, cell body plans, adaptive zones: causes and timing of eukaryote basal radiations // Journal of Eukaryotic Microbiology , 2009, V. 56, № 1, 26–33.
Читать дальше
Конец ознакомительного отрывка
Купить книгу