Заодно тут возникает одна частная, но интересная задачка. Мы давно уже знаем, что митохондрии (у всех эукариот) и хлоропласты (у фотосинтезирующих) произошли от симбиотических бактерий. Предками митохондрий были альфа-протеобактерии, а предками первичных хлоропластов — цианобактерии (вторичные хлоропласты, происходящие от поглощенных эукариот с первичными хлоропластами внутри, нас в данном случае не интересуют). И митохондрии, и первичные хлоропласты имеют две мембраны. Логично предположить, что внутренняя мембрана митохондрии или первичного хлоропласта — это плазматическая мембрана захваченной бактерии, а внешняя — мембрана пищеварительной вакуоли ее эукариотного хозяина. Именно это и утверждала классическая теория эндосимбиоза.
Но давайте обратим внимание на то, что предки и митохондрий, и хлоропластов относятся к грамотрицательным бактериям. Это означает, что у них две мембраны — внутренняя и внешняя. После захвата такой бактерии эукариотной клеткой неизбежно образуется конструкция из трех мембран: мембрана пищеварительной вакуоли и две мембраны бактерии. Какая же из них была утрачена? Кавалье-Смит считает, что и в хлоропластах, и в митохондриях наиболее вероятна потеря самой внешней из трех мембран — той, что принадлежала пищеварительной вакуоли хозяина [368] Cavalier-Smith , 2013a.
[369] Keeling P. J. Diversity and evolutionary history of plastids and their hosts // American Journal of Botany , 2004, V. 91, № 10, 1481–1493.
. Ибо потерять ее легче всего: в конце концов, захваченная бактерия просто разорвет эту мембрану, если вздумает внутри нее расти. Ко всему прочему, внешние мембраны митохондрий/хлоропластов и грамотрицательных бактерий совпадают по свойствам: и те и другие устроены как свободное «сито», проницаемое для максимального числа всевозможных веществ (в отличие как от внутренней мембраны бактерии, так и от внутриклеточных мембран хозяина-эукариота). Так что первая приходящая на ум схема, скорее всего, неверна. И в митохондриях, и в хлоропластах сохранились обе мембраны грамотрицательных бактерий. У одной группы эукариотных водорослей, а именно у глаукофит из супергруппы Plantae, между мембранами хлоропласта сохраняются даже остатки клеточной стенки — пептидогликановой, как бактериям и положено [370] Burki F. The eukaryotic tree of life from a global phylogenomic perspective // Cold Spring Harbor. Perspectives in Biology , 2014, V. 6, № 5, a016147.
. Кстати, это самое что ни на есть прямое свидетельство происхождения хлоропластов от цианобактерий.
У Томаса Кавалье-Смита есть одна особенность, роднящая его со многими другими хорошими биологами-эволюционистами (начиная, пожалуй, с нашего соотечественника — палеонтолога Владимира Ковалевского). Он прекрасно понимает, что на установлении родственных отношений организмов серьезное изучение эволюции не заканчивается, а начинается. Эволюционная биология не просто наука о том, кто чей предок. В такой же, если не большей мере ее интересует, как и почему произошли те или иные эволюционные события. Например, положение человека на молекулярно-филогенетическом древе сейчас известно абсолютно точно: ближайшая к нему эволюционная ветвь состоит из шимпанзе и бонобо; эти виды разошлись уже после того, как их общий предок отделился от предка человека, и поэтому являются нашими родственниками в строго одинаковой степени. Ну и что? В конце концов, гораздо интереснее узнать, когда и почему человек стал прямоходящим, как при этом менялась его система размножения и социальная структура, для чего увеличился мозг, откуда взялась речь. В общем, выстроить полный эволюционный сценарий, дополняющий тот, который предложил в свое время гениальный Оуэн Лавджой (очень хорошее изложение этого сценария на русском языке можно найти в книге Дональда Джохансона и Мейтленда Иди «Люси»). Разумеется, такие сценарии должны быть проверяемыми, и надо быть готовыми к тому, что иногда они будут опровергаться. Но без них изучать эволюцию было бы просто скучно.
Теперь вернемся к эволюционному древу эукариот и подведем сухие итоги. Исследования последнего десятилетия помимо множества спорных гипотез (которые мы тут не обсуждаем) привели к твердому установлению двух важных фактов. Во-первых, вместо двух равноценных супергрупп — хромальвеолят и ризарий, занимающих на древе соседние места, мы теперь имеем дело с тремя близкими, но самостоятельными ветвями — страменопилов, ризарий и альвеолят, — которые приходится сводить в одну супергруппу: иначе этот пазл не складывается. Во-вторых (и что гораздо более важно), существует эволюционная ветвь Unikonta, состоящая из двух супергрупп — опистоконтов и амебозоев. Подчеркнем, что и опистоконты, и амебозои сами по себе реальны. Просто они вместе образуют ветвь более высокого порядка.
Читать дальше
Конец ознакомительного отрывка
Купить книгу