Мнение, что жизнь может быть только углеродной, еще в 1970-х годах стали называть «углеродным шовинизмом». Люди, употреблявшие этот термин — например, известный философ Пауль Фейерабенд, — считали «углеродный шовинизм» признаком ограниченности воображения ученых, не способных допустить существование чего-то высокоорганизованного, но при этом принципиально отличающегося от привычных нам земных животных и растений. Этот подход отлично спародировал Станислав Лем в «Звездных дневниках Ийона Тихого». Есть там эпизод, где один ученый-негуманоид, житель огненной планеты с аммиачной атмосферой, поучает своего студента следующим образом:
«Как выглядят разумные существа иных миров? Прямо не скажу, подумай сам, научись мыслить. Прежде всего они должны иметь органы для усвоения аммиака, не правда ли? Какое устройство сделает это лучше, чем скрипла? Разве они не должны перемещаться в среде в меру упругой, в меру теплой, как наша? Должны, а? Вот видишь! А как это делать, если не хожнями? Аналогично будут формироваться и органы чувств — зрявни, клуствицы и скрябы…»
Что ж, не будем уподобляться косному мудрецу с огненной планеты. Включим воображение. В мысленных экспериментах на роль химической основы жизни не раз предлагались вместо углерода другие элементы, способные создавать цепочки атомов, — кремний (Si), бор (B) или азот (N). Однако бор и азот имеют валентность 3, а не 4, и это уже ограничивает разнообразие соединений, которые из них можно получить. При этом бора во Вселенной чрезвычайно мало, а длинные цепочки атомов азота образуются только при огромных давлениях, какие могут существовать разве что в глубинах планет-гигантов. В условиях, более-менее напоминающих земные, самым вероятным кандидатом на роль заменителя углерода остается кремний. Он имеет подходящую валентность 4, образует соединения, подобные углеводородам, и может реагировать с кислородом. Но есть несколько причин, по которым углерод при прочих равных условиях все же больше подходит на роль химической основы жизни.
Во-первых, углерод легко образует двойные связи (важнейшее для земной биохимии свойство!), а кремний из-за большего размера атома к этому неспособен.
Во-вторых, двуокись углерода (CO 2) — это при нормальных условиях углекислый газ, прекрасно растворяющийся в воде. А двуокись кремния (SiO 2) при тех же условиях — тугоплавкое твердое вещество с кристаллической решеткой, прошитой множеством ковалентных связей. Чистый SiO 2— это попросту кварц. Очевидно, что включить его в обмен веществ было бы гораздо труднее, чем углекислоту CO 2.
В-третьих, кремний-кремниевая связь менее прочна, чем углерод-углеродная, поэтому кремневодороды по сравнению с углеводородами гораздо легче разлагаются.
В итоге надо признать: вероятность, что жизнь на других планетах окажется углеродной, достаточно высока. И тот факт, что наша собственная жизнь оказалась углеродной, определенно неслучаен. Но это вовсе не значит, что живые существа, возникшие в любой точке Галактики, будут копиями земных! Любители поспорить о возможности кремниевой жизни зачастую упускают из виду, что альтернативная биохимия, очень сильно отличающаяся от земной, в принципе может быть получена и без всякого нарушения «углеродного шовинизма».
Давайте-ка еще раз присмотримся к химическим компонентам живых клеток. Из тех веществ, которые нам уже знакомы, в состав клеток входят, прежде всего, спирты, углеводы, сложные эфиры, карбоновые кислоты, оксикислоты и аминокислоты. Что у них общего? Ответ однозначен: все эти соединения — кислородсодержащие. Мы уже видели, что группы, за счет которых они отличаются друг от друга, почти всегда включают кислород (аминогруппа тут — единственное исключение, но и в аминокислотах кислород по определению всегда есть). Итак, земная жизнь построена из кислородсодержащей органики.
Однако ниоткуда не следует, что эта возможность — единственная. В состав органических молекул вполне могут входить и многие другие элементы помимо кислорода — например, азот и сера. С азотом мы уже знакомы, а о сере (S) сейчас достаточно сказать, что ее валентность в органических веществах чаще всего равна двум — как у кислорода. А теперь назовем навскидку несколько классов органических соединений, в которых есть азот или сера, зато никакого кислорода нет (см. рис. 1.9):
• имины — соединения с двойной связью между углеродом и азотом (C=N);
• нитрилы — соединения с тройной связью между углеродом и азотом (C≡N);
Читать дальше
Конец ознакомительного отрывка
Купить книгу