CH 3COOH + H 2O ⇌ CH 3COO −+ H 3O +
А если для простоты проигнорировать участие воды, то такой:
CH 3COOH ⇌ CH 3COO −+ H +
По Брёнстеду, «кислота» или «основание» — это не постоянное свойство соединения, а только и исключительно его роль в данной химической реакции. В принципе даже уксусная кислота может оказаться в «непривычной» для себя роли основания, если смешать ее с какой-нибудь более сильной кислотой — например, серной (H 2SO 4). В этом случае серная кислота отдаст протон и превратится в анион HSO 4 −, а уксусная кислота присоединит протон и превратится в довольно редкий, однако вполне реально существующий катион CH 3COOH 2 +:
CH 3COOH + H 2SO 4⇌ HSO 4 −+ CH 3COOH 2 +
И, по нашему определению, уксусная кислота в этой реакции будет основанием.
К счастью, условия, с которыми приходится иметь дело в биологии, настолько однотипны, что для подавляющего большинства веществ смена ролей кислот и оснований там редкость. Так что мы можем смело считать кислотой любую молекулу, которая в условиях живой клетки обычно отдает протон, а основанием — любую молекулу, которая в условиях живой клетки обычно его присоединяет. Единственное важное исключение — вода. Она примерно с одинаковым успехом может и отдавать протон, и присоединять его. Для всех остальных веществ «роли» кислот и оснований тут более-менее постоянны.
Одно из самых распространенных в природе оснований — гидроксил-ион OH −, тот самый, который образуется при диссоциации щелочи. Он очень легко присоединяет к себе протон и превращается в воду. Но с тем же успехом в составе основания может и не быть атомов кислорода. Например, аммиак (NH 3) — образцовое основание, никакого кислорода не содержащее. В растворе молекула аммиака присоединяет к себе протон и превращается в катион аммония (NH 4 +). Кстати, этот ион очень похож по структуре на молекулу метана (CH 4). Различаются они только зарядом ядра центрального атома.
А теперь вернемся к органической химии. Соединения углерода, в которых есть группа −NH 2, называются аминами . Общая формула аминов: R−NH 2. Сама группа −NH 2называется аминогруппой . При желании вполне можно сказать, что амин — это аммиак, у которого вместо одного из атомов водорода углеводородная цепочка. Аминогруппа в составе амина сохраняет основные свойства (такие же, как у аммиака), поэтому амины остаются полноценными основаниями. Самый простой из всех возможных аминов — метиламин (CH 3−NH 2), где атом углерода всего один. Как и следует из названия, он состоит из двух групп: метильной и аминогруппы. Между прочим, это то самое вещество, с кражами которого был связан ряд приключений героев захватывающего сериала «Во все тяжкие» (Breaking Bad).
Что ж, двинемся еще на шаг вперед. Любое вещество, включающее одновременно аминогруппу (−NH 2) и карбоксильную группу (−COOH), то есть являющееся одновременно амином и карбоновой кислотой, называется аминокислотой . Вот мы и добрались до насущного хлеба биохимиков. Роль аминокислот в живых организмах огромна: они служат и питательными веществами, и промежуточными продуктами обмена веществ, и — это, пожалуй, самое главное — «кирпичиками», из которых строятся важнейшие для земной жизни молекулы, а именно белки. Как именно это происходит, мы узнаем в главе 3.
Любая аминокислота проявляет одновременно кислотные свойства (как карбоновая кислота) и основные (как амин). Когда аминокислота попадает в водный раствор, ее карбоксильная группа обычно теряет протон, зато аминогруппа в тот же самый момент протон приобретает. В результате получается цвиттер-ион — нейтральная молекула, разные части которой несут компенсирующие друг друга разноименные заряды. Карбоксильная группа, отдав протон, становится анионом, аминогруппа, присоединив протон, становится катионом, а суммарный электрический заряд молекулы аминокислоты в результате остается равным нулю.
Самая простая из всех возможных аминокислот — глицин. Формула глицина: NH 2−CH 2−COOH. Интересно, что в нашем организме, как и в организмах многих животных, глицин служит нейтротрансмиттером, то есть веществом, передающим сигналы в нервной системе. Причем его действие на нервные клетки — тормозящее, то есть затрудняющее возбуждение. Именно поэтому глицин часто принимают в качестве успокоительного. Так вот, по химической формуле это типичная аминокислота. В цвиттер-ионной форме она будет выглядеть так: NH 3 +−CH 2−COO −.
Сейчас мы знаем уже довольно много о химических «слагаемых» жизни. Мы знаем, что такое спирты, альдегиды, кетоны, карбоновые кислоты, простые и сложные эфиры, углеводы, амины и аминокислоты. Все это — соединения углерода. Но вот вопрос: обязательно ли любая жизнь должна быть основана на углероде?
Читать дальше
Конец ознакомительного отрывка
Купить книгу