Ферменты дыхательной цепи сами по себе очень интересны. Они были открыты еще в XIX веке и активно изучаются биохимиками до сих пор. Это огромные белки со сложнейшей четвертичной структурой, дрейфующие в фосфолипидном море мембраны, подобно айсбергам, верхушки которых высовываются наружу — в водную фазу. Каждый фермент дыхательной цепи обязательно связан со своим кофактором, который, собственно, и захватывает электроны (это может быть упоминавшийся выше гем, но могут быть и другие кофакторы, которые мы не обсуждали, потому что «нельзя объять необъятное»). Поскольку мембрана по своим физическим свойствам близка к жидкости, ферменты и кофакторы могут в ней перемещаться, сталкиваясь друг с другом и передавая электроны по цепи. Причем один из этапов этого переноса электронов внутри мембраны осуществляет даже не белок, а гораздо более простой свободный кофактор — уже знакомый нам убихинон.
Ну а теперь вернемся к тому, что происходит дальше с конечными продуктами цикла лимонной кислоты.
Главный из этих продуктов — конечно, НАДH. Напомним, что это восстановленный вариант НАД +, присоединивший к себе два электрона (e −) и один протон (H +). При наличии желания и возможности молекулу НАДH можно разложить на составные части:
НАДH ⇌ НАД ++ H ++ 2e −
Именно это разложение ферменты дыхательной цепи и осуществляют. Молекуле НАДH, плавающей в матриксе, нужно только приблизиться к мембране, чтобы соответствующий фермент дыхательной цепи (он называется комплексом I) отобрал у нее оба электрона. А пройдя всю цепь, электроны доходят до комплекса IV, который тут же захватывает молекулярный кислород — только сейчас он наконец-то понадобился! — и объединяет его с электронами и протонами (последних, как мы знаем, всегда хватает в окружающем растворе). В результате два электрона, один атом кислорода и два протона монтируются в молекулу воды:
½O 2+ 2H ++ 2e −→ H 2O
Теперь глюкоза «сгорела» окончательно — до углекислого газа и воды. Процесс дыхания завершен.
А заодно произошла регенерация НАД +. Его теперь можно заново использовать в цикле лимонной кислоты или в любых других реакциях, в каких только захочется. Мы видим, что в данном случае именно кислород забрал у восстановленного НАДH атомы водорода, которыми тот был нагружен. Вот зачем, собственно, и нужен кислород при дыхании: чтобы послужить окислителем, отбирающим электроны у НАДH. Суммарное уравнение этого процесса выглядит так:
НАДH + H ++ ½O 2→ НАД ++ H 2O
Справа у нас тут восстановленный НАДH (с протоном) и кислород, а слева — окисленный НАД +и вода. Таким образом, мы имеем полное формальное право сказать, что НАДH окисляется кислородом. Хотя физически молекула НАДH вообще не взаимодействует с молекулой O 2: они разделены целой цепочкой ферментов, передающих электроны.
Осталось выяснить, каким же, собственно говоря, способом организм получает при этом энергию. Ведь к моменту окончания цикла лимонной кислоты молекул АТФ у нас пока еще мало, в несколько раз меньше, чем могло бы синтезироваться за счет полного сгорания глюкозы, если исходить из свободной энергии этого процесса. Чтобы понять, откуда в дыхательной цепи берется энергия, нужно обратить внимание на обмен протонов.
Что происходит с протонами, пока во внутренней мембране митохондрии работает дыхательная цепь (она же цепь переноса электронов)?
Дать ответ на этот вопрос нам сейчас уже не составит особого труда. Но, прежде чем к нему перейти, отметим несколько важных фактов, которые мы на самом-то деле уже знаем.
Во-первых, из-за того, что вода постоянно диссоциирует (Н 2О ⇌ H ++ OH −, см. главу 1), запас протонов в водных растворах неограничен. С точки зрения подавляющего большинства реакций они там всегда в избытке. Но — внимание! — этот избыток отнюдь не означает, что концентрации протонов всюду равны. Их вполне может быть где-то больше, а где-то меньше.
Во-вторых, внутренняя мембрана митохондрии практически непроницаема для всех ионов, не исключая и протоны (особенности ее состава таковы, что она даже более непроницаема для них, чем другие мембраны в той же клетке).
В-третьих, внутренняя мембрана митохондрии строго асимметрична: две ее стороны обладают разными свойствами. Белки дыхательной цепи «высовываются» из мембраны в окружающий водный раствор, но каждый — только в свою сторону, в согласии с той функцией, которую он выполняет. А нередко и разные части одного и того же белкового комплекса бывают направлены в разные стороны, причем каждая — в точном соответствии со своим предназначением. Например, белковый комплекс I, который отбирает электроны у НАДH, имеет два совершенно разных активных центра, один из которых «высовывается» из мембраны в матрикс, а другой — совсем наоборот, в сторону межмембранного пространства. Это типичная ситуация.
Читать дальше
Конец ознакомительного отрывка
Купить книгу