Денис Соломатин - mixOmics для гуманитариев

Здесь есть возможность читать онлайн «Денис Соломатин - mixOmics для гуманитариев» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Год выпуска: 2021, ISBN: 2021, Жанр: Программы, Прочая научная литература, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

mixOmics для гуманитариев: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «mixOmics для гуманитариев»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Тематика посвященного основам статистической обработки педагогической информации учебного пособия оказалась на редкость востребованной и актуальной, что послужило стимулом к написанию продолжения. Учебное пособие предназначено для бакалавров, обучающихся по направлению подготовки «Математическое образование» интересы которых лежат в области статистической обработки социальной и педагогической информации. Из отличительных особенностей R хорош тем, что бесплатен и установлен на серверах Google Cloud и ИМ СО РАН, а значит позволяет задействовать вычислительную мощь современных суперкомпьютеров. Кроме того, статистический анализ большого числа переменных на сегодняшний день лучше всего реализован в его дополнительном пакете mixOmics, а в современных реалиях R позволяет неподготовленному читателю разворачивать веб-сервер для решения задач собственной онлайн-школы, на открытие которой всё больше нас вдохновляют современные реалии.

mixOmics для гуманитариев — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «mixOmics для гуманитариев», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Различные типы педагогических данных могут быть изучены и интегрированы с mixOmics. Методы могут обрабатывать показатели успеваемости, измеренные в непрерывном масштабе или полученные на основе данных подсчета, которые становятся непрерывными данными после предварительной обработки и нормализации.

Пакет mixOmics не справляется с нормализацией, так как он универсален и охватывает широкий спектр данных. До начала анализа предполагается, что наборы данных были нормализованы с использованием соответствующих методов нормализации педагогических данных и предварительно обработаны, когда это возможно.

В то время как методы mixOmics могут обрабатывать большие массивы данных (несколько десятков тысяч переменных-предикторов), рекомендуется предварительно фильтровать данные до менее чем 10 000 переменных-предикторов на набор данных, например, с помощью медианного абсолютного отклонения, удалив пренебрежимо малые значения в наборах данных или путем удаления предикторов почти нулевой дисперсии. Такой шаг направлен на уменьшение вычислительного времени в процессе настройки параметров.

Методы mixOmics используют разложения матриц. Таким образом, числовая матрица данных или фреймы данных имеют n наблюдений или образцов в строках и p предикторов или переменных в столбцах.

В текущей версии mixOmics, ковариации, которые могут запутать анализ не включены в методы статистического анализа. Рекомендуется корректировать наборы этих ковариаций заранее, используя соответствующие унивариантные или многовариантные методы для удаления информационного шума.

Перечислим теперь основные методологические и теоретические основы, которые необходимо знать, чтобы эффективно применять mixOmics:

• Индивидуальные наблюдения или образцы: экспериментальные группы, на которых собиралась информация, например, обучающиеся, студенты, олимпиадные задания и прочее.

• Переменные, предикторы: считываемые измерения на каждом образце, например, успеваемость, посещаемость, решаемость задач, творческая самореализация и так далее.

• Дисперсия: измеряет уровень распылённости одной переменной. Как правило оценивается дисперсия целых компонентов, а не считываемых переменных. Высокая дисперсия указывает на то, что точки данных очень отличаются от среднего, и друг от друга (разбросаны).

• Ковариация: измеряет прочность взаимосвязи между двумя переменными, то есть являются ли они ковариантами друг друга. Высокое значение ковариации указывает на сильную связь, например, посещаемость и успеваемость у отдельных обучающихся часто различаются примерно одинаково; в общем случае, самые низкие и самые высокие значения коэффициента ковариации не имеют нижнего или верхнего предела.

• Корреляция: нормализованная версия ковариации, значения которой ограничены отрезком от -1 до 1.

• Линейная комбинация: разные переменные могут объединяться в одну путем умножения каждой из них на коэффициент и сложения полученных результатов. Линейная комбинация успеваемость a и посещаемости b может быть 2∙a – 1,5∙b с коэффициентами 2 и -1,5, присвоенных успеваемости и посещаемости соответственно.

• Компонент: искусственная переменная, построенная из линейной комбинации наблюдаемых переменных в данном наборе данных. Переменные коэффициенты оптимально определяются на основе какого-то статистического критерия. Например, в основном компоненте анализа определяются коэффициенты (основного) компонента, с тем чтобы максимизировать дисперсию компонента.

• Нагрузки: переменные коэффициенты, используемые для определения компонента.

• Визуализация образца: представление образцов, проецируемых в небольшом пространстве, охватываемом (определяемом) компонентами. Координаты образцов определяются значениями или вычисленными баллами компонентов.

• Изображение круга корреляции: представление переменных в пространстве, охватываемом компонентами. Каждая переменная координата определяется как корреляция между исходным переменным значением и каждым компонентом. Диаграмма с корреляционным кругом позволяет визуализировать корреляцию между переменными – отрицательную или положительную корреляцию, определяемую косинусом угла между центром круга и каждой переменной точкой, а также вклад каждой переменной в каждый компонент, определяемый абсолютным значением координат по каждому компоненту. Для такого толкования данные должны быть сосредоточены и масштабированы, что подразумевается по умолчанию в большинстве методов, за исключением PCA. Подробная информация об этом наглядном представлении информации будет представлена в соответствующем разделе ниже.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «mixOmics для гуманитариев»

Представляем Вашему вниманию похожие книги на «mixOmics для гуманитариев» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


libcat.ru: книга без обложки
Д Соломатин
Владимир Соломатин - Записки трудяги с Колымы. 2011
Владимир Соломатин
Отзывы о книге «mixOmics для гуманитариев»

Обсуждение, отзывы о книге «mixOmics для гуманитариев» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x