Денис Соломатин - Основы статистической обработки педагогической информации

Здесь есть возможность читать онлайн «Денис Соломатин - Основы статистической обработки педагогической информации» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Год выпуска: 2020, ISBN: 2020, Жанр: Программирование, management, Детская образовательная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Основы статистической обработки педагогической информации: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Основы статистической обработки педагогической информации»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Учебное пособие содержит текстовые сведения, иллюстрации и задания по основам статистической обработки педагогической информации в R, вольный пересказ содержимого сайта r4ds.had.co.nz, многие годы аккумулирующего труды исследователей всего мира, с занимательными дополнениями и историческими справками в попытке адаптации материала под профессиональные нужды современных онлайн-учителей. Последняя глава посвящена изучению возможностей R, позволяющих открыть собственную онлайн-школу.

Основы статистической обработки педагогической информации — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Основы статистической обработки педагогической информации», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

may5 <���– filter(flights, month == 5, day == 5)

R либо распечатывает результаты, либо сохраняет их в переменную. Когда нужно сделать и то, и другое, команда заключается в круглые скобки:

(may5 <���– filter(flights, month == 5, day == 5))

Чтобы эффективно использовать фильтрацию, нужно знать, как выбрать наблюдения, используя операторы сравнения. R предоставляет стандартный набор операторов: > (больше), >= (больше или равно), < (меньше), <= (меньше или равно), != (не равны), == (равны). Начинающие пользователи R зачастую ставят = вместо == при проверке равенства. Если допустить такое, то возникнет предупреждение об ошибке. Есть еще одна распространенная проблема, с которой сталкиваются при использовании ==, это числа с плавающей запятой. Поистине альтернативная арифметика:

sqrt (4) ^ 2 == 4

# > [1] TRUE

sqrt (5) ^ 2 == 5

# > [1] FALSE

1 / 50 * 50 == 1

# > [1] TRUE

1 / 49 * 49 == 1

# > [1] FALSE

Дело в том, что в R используется арифметика конечной точности, так как затруднительно хранить бесконечное количество цифр, либо реализовывать алгебраический подход. Поэтому каждое число в R является приближением, а вместо оператора == нередко используется функция near(), позволяющая сравнивать приближенные величины:

near(sqrt(5) ^ 2, 5)

# > [1] TRUE

Несколько аргументов функции filter() перечисленные через запятую равносильны объединению условий союзом «и», при этом, каждое выражение должно оказаться истинным, чтобы из входных данных соответствующая запись была сохранена в выходные данные. Для остальных логических связок можно использовать булевы операторы: & это «и», | это «или», ! это отрицание «не», xor( x , y ) это исключающее или с аргументами x , y .

Следующий код находит все рейсы, которые вылетели в феврале или марте:

filter(flights, month == 2 | month == 3)

Если попытаться ввести команду буквально

filter(flights, month == (2|3))

то вместо желаемого будут найдены все месяцы равные результату булевой операции 2|3, значение которой обращается в TRUE. В числовом контексте TRUE становится равным единице 1, поэтому будут найдены все январские вылеты, что вовсе не соответствует задуманному.

Полезным клавиатурным сокращением для решения обозначенной проблемы является x %in% y . Это позволит выбрать каждую строку, где x является одним из значений в y . Можно было бы использовать следующую альтернативу для кода выше:

filter(flights, month %in% c(2, 3))

Иногда можно упростить сложное выражение вспомнив законы де Моргана из курса математической логики: !(x & y) == !х | !y, и !(x | y) == !x & !y. Например, если нужно найти рейсы, которые не задерживались (по прилету или отправлению) более чем на час, можно воспользоваться любым из следующих фильтров:

filter(flights,!(arr_delay > 60 | dep_delay > 60))

filter(flights, arr_delay <= 60, dep_delay <= 60)

Кроме & и |, в R есть && и ||, но не используйте их сейчас, позже узнаете, при каких условиях уместно их применение.

Всякий раз, когда используется сложное составное выражение в filter(), предпочтительнее разбить выражение на несколько вспомогательных, это значительно упрощает последующую проверку работы. Вскоре узнаем, как быстро создать новые переменные. Одна важная особенность R, которая может затруднить фильтрацию, это пропущенные значения, или недоступные (NA), которые представляют собой неизвестное значение, поэтому пропущенные значения являются изгоями, практически любая операция с участием NA приведет к NA.

NA > 1

#> [1] NA

2 == NA

#> [1] NA

NA + 3

#> [1] NA

NA / 4

#> [1] NA

Самым алогичным результатом может показаться следующий:

NA == NA

#> [1] NA

Но его легко понять в конкретном контексте: совпадает ли содержимое двух ящиков, внутри которых неизвестно что? Мы не знаем! Если хотите определить, отсутствует ли значение конкретной переменной, можно воспользоваться функцией is.na(), в качестве аргумента задав интересующее имя. Функция filter() отбирает только те строки, для проверяемые условия обращаются в TRUE, при этом исключаются как значения FALSE, так и NA. Если хотите сохранить пропущенные значения, то запрашивайте их в явном виде:

filter (flights, is.na(month) | month > 1)

Упражнения

1. Найти все рейсы, которые: имели задержку прибытия на два и более часа; прилетели в Хьюстон; управлялись компанией Delta; улетели летом; прибыл с опозданием более чем на два часа; задержались они как минимум на час, но наверстали более 30 минут в полете; отбыли между полуночью и 6 утра (включительно).

2. Функция between() из пакета dplyr тоже полезна для фильтрации. А что она делает? Можно ли использовать её для упрощения кода, необходимого для получения ответов в предыдущем задании?

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Основы статистической обработки педагогической информации»

Представляем Вашему вниманию похожие книги на «Основы статистической обработки педагогической информации» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Основы статистической обработки педагогической информации»

Обсуждение, отзывы о книге «Основы статистической обработки педагогической информации» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x