Денис Соломатин - Основы статистической обработки педагогической информации

Здесь есть возможность читать онлайн «Денис Соломатин - Основы статистической обработки педагогической информации» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Год выпуска: 2020, ISBN: 2020, Жанр: Программирование, management, Детская образовательная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Основы статистической обработки педагогической информации: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Основы статистической обработки педагогической информации»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Учебное пособие содержит текстовые сведения, иллюстрации и задания по основам статистической обработки педагогической информации в R, вольный пересказ содержимого сайта r4ds.had.co.nz, многие годы аккумулирующего труды исследователей всего мира, с занимательными дополнениями и историческими справками в попытке адаптации материала под профессиональные нужды современных онлайн-учителей. Последняя глава посвящена изучению возможностей R, позволяющих открыть собственную онлайн-школу.

Основы статистической обработки педагогической информации — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Основы статистической обработки педагогической информации», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

geom_smooth( mapping = aes(x = `№№`, y = Тема2, color = Класс),

show.legend = FALSE)

Чтобы изобразить несколько графиков на одном чертеже, добавьте несколько вызовов функции geom к ggplot():

ggplot (data = My_table) +

geom_point (mapping = aes (x = `№№`, y = Тема2)) +

geom_smooth (mapping = aes (x = `№№`, y = Тема2))

Это, однако, вносит некоторое дублирование в код. Представите, что хотите изменить ось y для отображения успеваемости по теме 3 вместо темы 2, нужно будет менять переменную в дух местах, при этом можно забыть про обновление в одном из них.

Дабы избежать подобного сценария, набор значений аргумента mapping передается непосредственно в функцию ggplot(). ggplot2 будет рассматривать эти значений как глобальные и применять их к каждой функции вызываемой внутри. Другими словами, следующий код создаёт ту же иллюстрацию, что и предыдущий, но более лаконичен:

ggplot (data = My_table, mapping = aes (x = `№№`, y = Тема2)) +

geom_point() + geom_smooth()

Если же размещаете параметры mapping внутри каждой функции geom, то ggplot2 будет рассматривать их как локальные настройки для слоя. Будет использоваться параметр mapping для расширения или перезаписи глобальных настроек слоя. Это позволяет настраивать различную эстетику внутри индивидуальных слоёв:

ggplot (data = My_table, mapping = aes (x = `№№`, y = Тема2)) +

geom_point (mapping = aes (color = Класс)) + geom_smooth()

Можно использовать подобную идею чтобы выбирать разные данные для каждого - фото 24

Можно использовать подобную идею, чтобы выбирать разные данные для каждого слоя:

ggplot (data = My_table, mapping = aes (x = `№№`, y = Тема2)) +

geom_point (mapping = aes (color = Класс)) +

geom_smooth (data = My_table[My_table$Класс == "7а", ], se = FALSE)

В приведенном примере гладкая линия охватывает только подмножество исходного - фото 25

В приведенном примере, гладкая линия охватывает только подмножество исходного набора данных. Локальный аргумент в geom_smooth() переопределяет глобальный аргумент отбора данных в ggplot().

Разберем как работает фильтрация чуть позже, на данный момент достаточно понять, что эта команда выбирает только учеников 7а класса, а опция se = FALSE отключает подсветку доверительного интервала.

Упражнения

1. Какую функцию из категории geom_ вы бы использовали для построения линейного графика? А для круговой, лепестковой диаграммы, гистограммы?

2. Что меняет опция show.legend = FALSE? Что происходит если её убрать? Как думаете, почему она использовалась ранее в примере?

3. Что делает аргумент se для функции geom_smooth ()?

4. Воссоздайте код R, необходимый для создания следующего рисунка и дайте ему соответствующую интерпретацию:

Подробнее остановимся на гистограммах так называемых прямоугольных - фото 26

Подробнее остановимся на гистограммах, – так называемых прямоугольных диаграммах. Они кажутся простыми, но интересны тем, что открывают потенциальные закономерности в наблюдаемой статистике. Рассмотрим базовую линейчатую диаграмму, построенную следующим образом с помощью функции geom_bar(). Принимая во внимание, как Роберт Грин Ингерсолл (1833-1899) за оффлайн-школой закрепил хлёсткое определение: «Школа – это место, где шлифуют булыжники и губят алмазы», – медленно, но верно приобщаясь к принципиально иной онлайн-школе попробуем всё же научиться правильному обращению с алмазами. На диаграмме ниже будет показано общее количество обработанных алмазов – бриллиантов, хранящихся в предустановленной с пакетом ggplot2 базе данных, сгруппированных по огранке.

База данных о бриллиантах (diamonds) поставляется в комплекте ggplot2 и содержит информацию о ~54 000 дорогостоящих украшениях, включая цену, размер в каратах, цвет, прозрачность и огранку каждого из них. Несомненно, онлайн-учителю любой по карману. Диаграмма показывает, что бриллиантов с идеальной огранкой имеется гораздо больше, чем с черновой обработкой:

ggplot (data = diamonds) +

geom_bar (mapping = aes (x = cut, colour = diamonds$color))

На оси x диаграмма показывает огранку cut алмазов На оси y с учетом цвета - фото 27

На оси x диаграмма показывает огранку (cut) алмазов. На оси y с учетом цвета отображается их общее количество (count), но в базе данных не хранится поле count. Откуда же берется информация о количестве? Одни алгоритмы графопостроителей, например диаграммы рассеяния, формируют изображение по необработанным значениям исходного набора данных. Другие, например гистограммы, вычисляют новые вспомогательные значения при построении. Гистограммы, как частотные диаграммы, преобразуют ваши данные, осуществляют подсчеты числа записей определенного типа, будто раскладывая их по ящикам. При масштабировании последних диаграмма адаптируется к объему исходных данных, а затем строятся прямоугольники нужного размера. Вычисляется статистическая сводка выборки и после этого рисуется специально отформатированный прямоугольник. Алгоритм, используемый при вычислении новых значений для графиков, определяется параметром stat, сокращенно от «статистическое преобразование». В примере ниже показано, как это работает с geom_bar(). Вы можете узнать, какое статистическое преобразование использует та или иная функция, проверив значение по умолчанию аргумента stat. Например, в документации по функции ?geom_bar сказано, что её значение по умолчанию для аргумента stat это count, то есть geom_bar() использует функцию stat_count(), описанную на той же странице, что и geom_bar(), и если прокрутить вниз, то можно найти раздел «вычисляемые переменные», в котором сказано, что вычисляются две новые вспомогательные переменные: count и prop.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Основы статистической обработки педагогической информации»

Представляем Вашему вниманию похожие книги на «Основы статистической обработки педагогической информации» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Основы статистической обработки педагогической информации»

Обсуждение, отзывы о книге «Основы статистической обработки педагогической информации» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x