Денис Соломатин - Основы статистической обработки педагогической информации

Здесь есть возможность читать онлайн «Денис Соломатин - Основы статистической обработки педагогической информации» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Год выпуска: 2020, ISBN: 2020, Жанр: Программирование, management, Детская образовательная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Основы статистической обработки педагогической информации: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Основы статистической обработки педагогической информации»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Учебное пособие содержит текстовые сведения, иллюстрации и задания по основам статистической обработки педагогической информации в R, вольный пересказ содержимого сайта r4ds.had.co.nz, многие годы аккумулирующего труды исследователей всего мира, с занимательными дополнениями и историческими справками в попытке адаптации материала под профессиональные нужды современных онлайн-учителей. Последняя глава посвящена изучению возможностей R, позволяющих открыть собственную онлайн-школу.

Основы статистической обработки педагогической информации — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Основы статистической обработки педагогической информации», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

"Романов Роман", "Николаев Николай", "Григорьев Григогий", "Викторов Виктор",

"Михайлов Михаил", "Тимуриев Тимур", "Ульянова Ульяна", "Ольгина Ольга",

"Людмилова Людмила", "Дарьева Дарья", "Кристинина Кристина",

"Натальина Наталья", "Глафирова Глафира", "Янина Яна", "Иринова Ирина",

"Валентинова Валентина", "Идеальный ученик", "Другая крайность"), Тема1 = c(5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 1), Тема2 = c(2, 3, 3, 2, 2, 3, 3, 2, 2, 3, 4, 5, 5, 4, 4, 4, 5, 5, 4, 5, 5, 1), Тема3 = c(1, 2, 2, 1, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 1, 2, 2, 2, 1, 2, 5, 1), Тема4 = c(4, 5, 5, 4, 4, 4, 5, 5, 5, 4, 5, 5, 4, 4, 5, 5, 4, 4, 5, 4, 5, 1), `Тема 5` = c(1, 2, 2, 2, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 1, 2, 2, 1, 2, 5, 5, 1), `№№` = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22)),

row.names = c(NA, -22L), class = c("tbl_df", "tbl", "data.frame"))

Представим успеваемость графически:

Насколько похожи эти две иллюстрации Оба графика содержат одну и ту же - фото 21 Насколько похожи эти две иллюстрации Оба графика содержат одну и ту же - фото 22

Насколько похожи эти две иллюстрации?

Оба графика содержат одну и ту же переменную x , один и тот же y , оба визуализируют одни и те же данные. Но их сюжет не идентичен. Каждая иллюстрация описается на свои визуальные образы для представления данных. В синтаксисе ggplot2 они используют разные геометрические объекты (geom). Geom – это геометрический объект, который применяет графопостроитель для представления данных. Например, линейные диаграммы используют линейные геометрические объекты, прямоугольные диаграммы используют геометрические объекты прямоугольной формы и так далее. Диаграммы рассеяния нарушают этот тренд, они используют точечное представление данных. Как видели выше, можно использовать разные геометрические объекты для визуализации одних и тех же данных. На левом графике используется точечная геометрия, а в правом – гладкая линия, усредняющая данные. Чтобы изменить геометрические примитивы на вашем чертеже, измените функцию geom_, которую добавляете к ggplot (). Например, чтобы воспроизвести вышеприведенные рисунки, выполните код:

# левый график

ggplot (data = My_table) +

geom_point (mapping = aes (x = `№№`, y = Тема2))

# правый график

ggplot (data = My_table) +

geom_smooth (mapping = aes (x = `№№`, y = Тема2))

Каждая функция geom в ggplot2 принимает аргумент mapping, однако не каждая настройка эстетики работает с любой функцией geom. Можно было бы установить форму точки, но нельзя установить форму линии. С другой стороны, можно установить параметр linetype, тогда geom_smooth() нарисует линии разного типа для каждого уникального значения переменной, которая сопоставлена с типом линии.

Например, функция geom_smooth() может разделить обучающихся по классам:

ggplot (data = My_table) +

geom_smooth (mapping = aes (x = `№№`, y = Тема2, linetype = Класс))

Одна линия описывает успехи в освоении Темы2 для всех одноклассников из «7а», а другая из «7б»:

Покажется немного странным эклектикой но можно выполнить наложение всех линий - фото 23

Покажется немного странным, эклектикой, но можно выполнить наложение всех линий поверх необработанных данных с последующим их окрашиванием в соответствии с успеваемостью класса. Заметим, что этот график потребует два вызова geom_ для построения, но как разместить несколько геометрических объектов разного типа на одном и том же графике.

ggplot2 обеспечивает более 40 вариантов функции geom_, пакеты расширений предоставляют ещё больше возможностей. Лучший способ получить исчерпывающий обзор, используйте справку: ?geom_smooth.

Многие варианты функции geom_, такие как geom_smooth(), например, используют один геометрический объект для отображения нескольких строк данных. Для этих функций, можно выносить эстетику группы в категориальную переменную для рисования нескольких объектов в едином стиле, так как ggplot2 нарисует отдельный объект для каждого уникального объекта значение группирующей переменной. На практике ggplot2 будет автоматическая группировка данных для этих функций всякий раз, когда сопоставляется эстетика для дискретной переменной (как было в примере с linetype). Удобно использовать эту особенность, потому что в таком случае группа эстетических параметров оказывается самой по себе, она не выносится на поле легенды или в настройки каждого объекта. К слову, показ легенды можно запретить вовсе, установкой значения параметра show.legend = FALSE, как это показано в примере кода ниже:

ggplot (data = My_table) + geom_smooth (mapping = aes (x = `№№`, y = Тема2))

ggplot (data = My_table) +

geom_smooth (mapping = aes (x = `№№`, y = Тема2, group = Класс))

ggplot (data = My_table) +

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Основы статистической обработки педагогической информации»

Представляем Вашему вниманию похожие книги на «Основы статистической обработки педагогической информации» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Основы статистической обработки педагогической информации»

Обсуждение, отзывы о книге «Основы статистической обработки педагогической информации» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x