Энтони Уильямс - Параллельное программирование на С++ в действии. Практика разработки многопоточных программ

Здесь есть возможность читать онлайн «Энтони Уильямс - Параллельное программирование на С++ в действии. Практика разработки многопоточных программ» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2012, ISBN: 2012, Издательство: ДМК Пресс, Жанр: Программирование, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Параллельное программирование на С++ в действии. Практика разработки многопоточных программ: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Параллельное программирование на С++ в действии. Практика разработки многопоточных программ»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

В наши дни компьютеры с несколькими многоядерными процессорами стали нормой. Стандарт С++11 языка С++ предоставляет развитую поддержку многопоточности в приложениях. Поэтому, чтобы сохранять конкурентоспособность, вы должны овладеть принципами и приемами их разработки, а также новыми средствами языка, относящимися к параллелизму.
Книга «Параллельное программирование на С++ в действии» не предполагает предварительных знаний в этой области. Вдумчиво читая ее, вы научитесь писать надежные и элегантные многопоточные программы на С++11. Вы узнаете о том, что такое потоковая модель памяти, и о том, какие средства поддержки многопоточности, в том числе запуска и синхронизации потоков, имеются в стандартной библиотеке. Попутно вы познакомитесь с различными нетривиальными проблемами программирования в условиях параллелизма.

Параллельное программирование на С++ в действии. Практика разработки многопоточных программ — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Параллельное программирование на С++ в действии. Практика разработки многопоточных программ», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Листинг 2.5.Возврат объекта std::threadиз функции

std::thread f() {

void some_function();

return std::thread(some_function);

}

std::thread g() {

void some_other_function(int);

std::thread t(some_other_function, 42);

return t;

}

Аналогично, если требуется передать владение внутрь функции, то достаточно, чтобы она принимала экземпляр std::threadпо значению в качестве одного из параметров, например:

void f(std::thread t);

void g() {

void some_function();

f(std::thread(some_function));

std::thread t(some_function);

f(std::move(t));

}

Одно из преимуществ, которые даёт поддержка перемещения в классе std::thread, заключается в том, что мы можем модифицировать класс thread_guardиз листинга 2.3, так чтобы он принимал владение потоком. Это позволит избежать неприятностей в случае, когда время жизни объекта thread_guardоказывает больше, чем время жизни потока, на который он ссылается, а, кроме того, это означает, что никто другой не сможет присоединиться к потоку или отсоединить его, так как владение было передано объекту thread_guard. Поскольку основное назначение этого класса гарантировать завершение потока до выхода из области видимости, я назвал его scoped_thread. Реализация и простой пример использования приведены в листинге 2.6.

Листинг 2.6.Класс scoped_threadи пример его использования

class scoped_thread {

std::thread t;

public:

explicit scoped_thread(std::thread t_) : ← (1)

t(std::move(t_)) {

if (!t.joinable()) ← (2)

throw std::logic_error("No thread");

}

~scoped_thread() {

t.join(); ← (3)

}

scoped_thread(scoped_thread const&)=delete;

scoped_thread& operator=(scoped_thread const&)=delete;

};

struct func; ← см. листинг 2.1

void f() {

int some_local_state;

scoped_thread t(std::thread(func(some_local_state))); ← (4)

do_something_in_current_thread();

} ← (5)

Этот пример очень похож на приведенный в листинге 2.3, только новый поток теперь передается непосредственно конструктору scoped_thread (4), вместо того чтобы создавать для него отдельную именованную переменную. Когда новый поток достигает конца f (5), объект scoped_threadуничтожается, а затем поток соединяется (3)с потоком, переданным конструктору (1). Если в классе thread_guardиз листинга 2.3 деструктор должен был проверить, верно ли, что поток все еще допускает соединение, то теперь мы можем сделать это в конструкторе (2)и возбудить исключение, если это не так.

Поддержка перемещения в классе std::threadпозволяет также хранить объекты этого класса в контейнере при условии, что класс контейнера поддерживает перемещение (как, например, модифицированный класс std::vector<>). Это означает, что можно написать код, показанный в листинге 2.7, который запускает несколько потоков, а потом ждет их завершения.

Листинг 2.7.Запуск нескольких потоков и ожидание их завершения

void do_work(unsigned id);

void f() {

std::vector threads;

for (unsigned i = 0; i < 20; ++i) { │ Запуск

threads.push_back(std::thread(do_work(i))); ←┘ потоков

} │ Поочередный

std::for_each(threads.begin(), threads.end(),│ вызов join()

std::mem_fn(&std::thread::join)); ←┘ для каждого потока

}

Если потоки применяются для разбиения алгоритма на части, то зачастую такой подход именно то, что требуется: перед возвратом управления вызывающей программе все потоки должны завершиться. Разумеется, столь простая структура, как в листинге 2.7, предполагает, что каждый поток выполняет независимую работу, а единственным результатом является побочный эффект, заключающийся в изменении разделяемых данных. Если бы функция f()должна была вернуть вызывающей программе значение, зависящее от результатов операций, выполненных в потоках, то при такой организации получить это значение можно было бы только путем анализа разделяемых данных по завершении всех потоков. В главе 4 обсуждаются альтернативные схемы передачи результатов работы из одного потока в другой.

Хранение объектов std::threadв векторе std::vector— шаг к автоматизации управления потоками: вместо тот чтобы создавать отдельные переменные для потоков и выполнять соединение напрямую, мы можем рассматривать группу потоков. Можно пойти еще дальше и создавать не фиксированное число потоков, как в листинге 2.7, а определять нужное количество динамически, во время выполнения.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Параллельное программирование на С++ в действии. Практика разработки многопоточных программ»

Представляем Вашему вниманию похожие книги на «Параллельное программирование на С++ в действии. Практика разработки многопоточных программ» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Параллельное программирование на С++ в действии. Практика разработки многопоточных программ»

Обсуждение, отзывы о книге «Параллельное программирование на С++ в действии. Практика разработки многопоточных программ» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x