Энтони Уильямс - Параллельное программирование на С++ в действии. Практика разработки многопоточных программ

Здесь есть возможность читать онлайн «Энтони Уильямс - Параллельное программирование на С++ в действии. Практика разработки многопоточных программ» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2012, ISBN: 2012, Издательство: ДМК Пресс, Жанр: Программирование, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Параллельное программирование на С++ в действии. Практика разработки многопоточных программ: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Параллельное программирование на С++ в действии. Практика разработки многопоточных программ»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

В наши дни компьютеры с несколькими многоядерными процессорами стали нормой. Стандарт С++11 языка С++ предоставляет развитую поддержку многопоточности в приложениях. Поэтому, чтобы сохранять конкурентоспособность, вы должны овладеть принципами и приемами их разработки, а также новыми средствами языка, относящимися к параллелизму.
Книга «Параллельное программирование на С++ в действии» не предполагает предварительных знаний в этой области. Вдумчиво читая ее, вы научитесь писать надежные и элегантные многопоточные программы на С++11. Вы узнаете о том, что такое потоковая модель памяти, и о том, какие средства поддержки многопоточности, в том числе запуска и синхронизации потоков, имеются в стандартной библиотеке. Попутно вы познакомитесь с различными нетривиальными проблемами программирования в условиях параллелизма.

Параллельное программирование на С++ в действии. Практика разработки многопоточных программ — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Параллельное программирование на С++ в действии. Практика разработки многопоточных программ», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

void f(int i, std::string const& s);

void oops(int some_param) {

char buffer[1024]; ← (1)

sprintf(buffer, "%i", some_param);

std::thread t(f, 3, buffer); (2)

t.detach();

}

В данном случае в новый поток передается (2)указатель на локальную переменную buffer (1), и есть все шансы, что выход из функции oops произойдет раньше, чем буфер будет преобразован к типу std::stringв новом потоке. В таком случае мы получим неопределенное поведение. Решение заключается в том, чтобы выполнить преобразование в std::string до передачи bufferконструктору std::thread:

void f(int i,std::string const& s);

void not_oops(int some_param) {

char buffer[1024]; │ Использование

sprintf(buffer, "%i", some_param); │ std::string

std::thread t(f, 3, std::string(buffer));←┘ позволяет избежать

t.detach(); висячего указателя

}

В данном случае проблема была в том, что мы положились на неявное преобразование указателя на bufferк ожидаемому типу первого параметра std::string, а конструктор std::threadкопирует переданные значения «как есть», без преобразования к ожидаемому типу аргумента.

Возможен и обратный сценарий: копируется весь объект, а вы хотели бы получить ссылку Такое бывает, когда поток обновляет структуру данных, переданную по ссылке, например:

void update_data_for_widget(widget_id w,widget_data& data); ← (1)

void oops_again(widget_id w) {

widget_data data;

std::thread t(update_data_for_widget, w, data); ← (2)

display_status();

t.join();

process_widget_data(data); ← (3)

}

Здесь update_data_for_widget (1)ожидает, что второй параметр будет передан по ссылке, но конструктор std::thread (2)не знает об этом: он не в курсе того, каковы типы аргументов, ожидаемых функцией, и просто слепо копирует переданные значения. Поэтому функции update_data_for_widgetбудет передана ссылка на внутреннюю копию data, а не на сам объект data. Следовательно, по завершении потока от обновлений ничего не останется, так как внутренние копии переданных аргументов уничтожаются, и функция process_widget_dataполучит не обновленные данные, а исходный объект data (3). Для читателя, знакомого с механизмом std::bind, решение очевидно: нужно обернуть аргументы, которые должны быть ссылками, объектом std::ref. В данном случае, если мы напишем

std::thread t(update_data_for_widget, w, std::ref(data));

то функции update_data_for_widgetбудет правильно передана ссылка на data, а не копия data.

Если вы знакомы с std::bind, то семантика передачи параметров вряд ли вызовет удивление, потому что работа конструктора std::threadи функции std::bindопределяется в терминах одного и того же механизма. Это, в частности, означает, что в качестве функции можно передавать указатель на функцию-член при условии, что в первом аргументе передается указатель на правильный объект:

class X {

public:

void do_lengthy_work();

};

X my_x;

std::thread t(&X::do_lengthy_work, &my_x); ← (1)

Здесь мы вызываем my_x.do_lengthy_work()в новом потоке, поскольку в качестве указателя на объект передан адрес my_x (1). Так вызванной функции-члену можно передавать и аргументы: третий аргумент конструктора std::thread станет первым аргументом функции-члена и т.д.

Еще один интересный сценарий возникает, когда передаваемые аргументы нельзя копировать, а можно только перемещать : данные, хранившиеся в одном объекте, переносятся в другой, а исходный объект остается «пустым». Примером может служить класс std::unique_ptr, который обеспечивает автоматическое управление памятью для динамически выделенных объектов. В каждый момент времени на данный объект может указывать только один экземпляр std::unique_ptr, и, когда этот экземпляр уничтожается, объект, на который он указывает, удаляется. Перемещающий конструктор и перемещающий оператор присваивания позволяют передавать владение объектом от одного экземпляра std::unique_ptrдругому (о семантике перемещения см. приложение А, раздел А.1.1). После такой передачи в исходном экземпляре остается указатель NULL. Подобное перемещение значений дает возможность передавать такие объекты в качестве параметров функций или возвращать из функций. Если исходный объект временный, то перемещение производится автоматически, а если это именованное значение, то передачу владения следует запрашивать явно, вызывая функцию std::move(). В примере ниже показано применение функции std::moveдля передачи владения динамическим объектом потоку:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Параллельное программирование на С++ в действии. Практика разработки многопоточных программ»

Представляем Вашему вниманию похожие книги на «Параллельное программирование на С++ в действии. Практика разработки многопоточных программ» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Параллельное программирование на С++ в действии. Практика разработки многопоточных программ»

Обсуждение, отзывы о книге «Параллельное программирование на С++ в действии. Практика разработки многопоточных программ» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x