Стандартная библиотека С++ также предлагает высокоуровневые абстракции и средства, позволяющие писать многопоточный код проще и с меньшим количеством ошибок. Некоторые из них несколько снижают производительность из-за необходимости выполнять дополнительный код. Однако эти накладные расходы не обязательно означают высокую плату за абстрагирование: в общем случае цена не выше, чем пришлось бы заплатить при написании эквивалентной функциональности вручную, и к тому же компилятор волне может встроить значительную часть дополнительного кода.
В некоторых случаях высокоуровневые средства обеспечивают большую функциональность, чем необходимо для конкретной задачи. Как правило, это не страшно: вы не платите за то, чем не пользуетесь. Редко, но бывает, что избыточная функциональность негативно сказывается на производительности других частей программы. Если ее стоимость слишком высока, а производительность имеет первостепенное значение, то, быть может, имеет смысл вручную запрограммировать необходимую функциональность, пользуясь низкоуровневыми средствами. Но в подавляющем большинстве случаев дополнительная сложность и возможность внести ошибки намного перевешивают небольшой выигрыш в производительности. Даже если профилирование показывает, что средства стандартной библиотеки С++ действительно являются узким местом, не исключено, что проблема в неудачном дизайне приложения, а не в плохой реализации библиотеки. Например, когда слишком много потоков конкурируют за один мьютекс, производительность упадет — и сильно. Но лучше не пытаться чуть-чуть ускорить операции с мьютексами, а изменить структуру приложения, так чтобы снизить конкуренцию. Вопрос о том, как проектировать приложения, чтобы уменьшить конкуренцию, обсуждается в главе 8.
В тех крайне редких случаях, когда стандартная библиотека не обеспечивает необходимой производительности или поведения, может возникнуть необходимость в использовании платформенно-зависимых средств.
1.3.4. Платформенно-зависимые средства
Хотя библиотека многопоточности для С++ содержит достаточно полный набор средств для создания многопоточных программ, на любой платформе имеются специальные средства, помимо включенных в библиотеку. Чтобы можно было получить доступ к этим средствам, не отказываясь от использования стандартной библиотеки, типы, имеющиеся в библиотеки многопоточности, иногда содержат функцию-член native_handle()
, которая позволяет работать на уровне платформенного API. По природе своей любые операции, выполняемые с помощью функции native_handle()
, зависят от платформы и потому в данной книге (как и в самой стандартной библиотеке С++) не рассматриваются.
Разумеется, перед тем задумываться о применении платформенно-зависимых средств, стоит как следует разобраться в том, что предлагает стандартная библиотека, поэтому начнем с примера.
Итак, вы получили новенький, с пылу с жару компилятор, совместимый со стандартом С++11. Что дальше? Как выглядит многопоточная программа на С++? Да примерно так же, как любая другая программа, — с переменными, классами и функциями. Единственное существенное отличие состоит в том, что некоторые функции могут работать параллельно, поэтому нужно следить за тем, чтобы доступ к разделяемым данным был безопасен (см. главу 3). Понятно, что для параллельного исполнения необходимо использовать специальные функции и объекты, предназначенные для управления потоками.
1.4.1. Здравствуй, параллельный мир
Начнем с классического примера — программы, которая печатает фразу «Здравствуй, мир». Ниже приведена тривиальная однопоточная программа такого сорта, от нее мы будем отталкиваться при переходе к нескольким потокам.
#include
int main() {
std::cout << "Здравствуй, мир\n";
}
Эта программа всего лишь выводит строку Здравствуй мир в стандартный поток вывода. Сравним ее с простой программой «Здравствуй, параллельный мир», показанной в листинге 1.1, — в ней для вывода сообщения запускается отдельный поток.
#include
#include ←
(1)
void hello() ←
(2)
{
std::cout << "Здравствуй, параллельный мир\n";
}
int
main() {
std::thread t(hello); ←
(3)
t.join(); ←
(4)
}
Прежде всего, отметим наличие дополнительной директивы #include
(1). Все объявления, необходимые для поддержки многопоточности, помещены в новые заголовочные файлы; функции и классы для управления потоками объявлены в файле , а те, что нужны для защиты разделяемых данных, — в других заголовках.
Читать дальше