function recursive_power_set(items)
····ps ← copy(items)
····for each e in items
·······ps ← ps.remove(e)
·······ps ← ps + recursive_power_set(ps)
·······ps ← ps.add(e)
····return ps
Эта простота имеет свою цену. Рекурсивные алгоритмы при выполнении порождают многочисленные копии самих себя, создавая дополнительные вычислительные издержки. Компьютер должен отслеживать незаконченные рекурсивные вызовы и их частичные вычисления, что требует большего объема памяти. При этом дополнительные такты центрального процессора расходуются на переключение с одного рекурсивного вызова на следующий и назад.
Эту проблему можно наглядно увидеть на деревьях рекурсивных вызовов — диаграммах, показывающих, каким образом алгоритм порождает новые вызовы, углубляясь в вычисления. Мы уже видели деревья рекурсивных вызовов для поиска чисел Фибоначчи (см. рис. 3.3) и для проверки слов-перевертышей (см. рис. 3.4).
Если требуется максимальная производительность, то можно избежать этих дополнительных издержек, переписав рекурсивный алгоритм в чисто итеративной форме. Такая возможность есть всегда. Это компромисс: итеративный программный код обычно выполняется быстрее, но вместе с тем он более громоздкий и его труднее понять.
Полный перебор, он же метод «грубой силы», предполагает перебор всех случаев, которые могут быть решением задачи. Эта стратегия также называется исчерпывающим поиском. Она обычно прямолинейна и незамысловата: даже в том случае, когда вариантов миллиарды, она все равно опирается исключительно на силу , то есть на способность компьютера проверить их все.
Рис. 3.5.Простое объяснение: полный перебор [31] Любезно предоставлено http://geek-and-poke.com .
Давайте посмотрим, как ее можно использовать, чтобы решить следующую задачу.
Лучшая сделка
У вас есть список цен на золото по дням за какой-то интервал времени. В этом интервале вы хотите найти такие два дня, чтобы, купив золото, а затем продав его, вы получили бы максимально возможную прибыль.
Не всегда у вас получится сделать покупку по самой низкой цене, а продать по самой высокой: первая может случиться позже второй, а перемещаться во времени вы не умеете. Алгоритм полного перебора позволяет просмотреть все пары дней . По каждой паре он находит прибыль и сравнивает ее с наибольшей, найденной к этому моменту. Мы знаем, что число пар дней в интервале растет квадратично по мере его увеличения [32] В интервале n дней имеется n (n + 1)/2 пар дней (см. раздел «Комбинаторика» главы 1).
. Еще не приступив к написанию кода, мы уже уверены, что он будет иметь O ( n 2).
Задача о лучшей сделке решается и с помощью других стратегий с меньшей временной сложностью — мы вскоре их рассмотрим. Но в некоторых случаях наилучшую временную сложность дает подход на основе полного перебора. Это имеет место в следующей задаче.
Рюкзак
У вас есть рюкзак, вы носите в нем предметы, которыми торгуете. Его вместимость ограничена определенным весом, так что вы не можете сложить в него весь свой товар. Вы должны выбрать, что взять. Цена и вес каждого предмета известны, вам нужно посчитать, какое их сочетание дает самый высокий доход.
Степенное множество ваших предметов [33] Подробнее о степенных множествах см. в приложении III.
содержит все возможные их сочетания. Алгоритм полного перебора просто проверяет эти варианты. Поскольку вы уже знаете, как вычислять степенные множества, алгоритм не должен вызвать у вас затруднений:
function knapsack(items, max_weight)
····best_value ← 0
····for each candidate in power_set(items)
········if total_weight(candidate) ≤ max_weight
············if sales_value(candidate) > best_value
················best_value ← sales_value(candidate)
················best_candidate ← candidate
····return best_candidate
Для n предметов существует 2 n подборок. В случае каждой из них мы проверяем, не превышает ли ее общий вес вместимости рюкзака и не оказывается ли общая стоимость подборки выше, чем у лучшей, найденной к этому времени. Иными словами, для каждой подборки выполняется постоянное число операций, а значит, алгоритм имеет сложность O (2 n).
Читать дальше
Конец ознакомительного отрывка
Купить книгу