Проектирование компонентов для поддержки параллелизма
«Как только мы пересекаем черту, чтобы реализовать себя в компьютерной технологии, наши успехи начинают зависеть от способности нашего ума к эволюции. Мы становимся частью программного, а не аппаратного обеспечения.»
Рей Курзвейл (Ray Kurzweil), The Age of Spiritual Machines
При реализации параллелизма в программном обеспечении необходимо следовать одному важном)- правилу: параллелизм нужно обнаружить, а не внести извне. Иногда цель увеличения быстродействия программы не является достаточно оп-равданной для насаждения параллелизма в логику программы, которая по своей природе является последовательной. Параллелизм в проекте должен быть естественным следствием требований системы. Если параллельность определена в технических требованиях ксистеме, то следует с самого начала рассматривать варианты архитектуры и алгоритмы, которые поддерживают параллелизм. В противном случае необходимость паралле-лизма «всплывет» в уже существующей системе, которая изначально была нацелена лишь на выполнение последовательных действий. Такал участь часто постигает системы, которые первоначально разрабатывались как однопользовательские, а затем постепенно вырастали во многопользовательские, или системы, которые с функциональной точки зрения слишком далеко отошли от исходных спецификаций. В таких системах намерение внести в систему параллелизм можно сравнить с попыткой «махать руками после драки», и в этом случае для поддержки параллельности остается лишь делать архитектурные «пристройки». В этой книге мы описываем методы реализации естественного параллелизма. Другими словами, если мы знаем, что нам нужно обеспечить параллелизм, нас интересует, как это сделать, используя средства С++?
Мы представляем архитектурный подход к управлению параллелизмом в программе, используя преимущества С++-поддержки объектно-ориентированного программирования и универсальности. В частности, С++-средства поддержки наследования, полиморфизма и шаблонов успешно применяются для реализации архитектурных решений и программных компонентов, которые поддерживают параллельность. Методы объектно-ориентированного программирования обеспечивают поддержку десяти типов классов, перечисленных в табл. 11.1.
Таблица 11.1. Типы объектно-ориентированных классов
Шаблонный класс Обобщенный код, который может использовать любой тип; реальный тип является параметром для тела этого кода
Контейнерный класс Класс, используемый для хранения объектов во внутренней или внешней памяти
Виртуальный базовый класс Базовый класс, который служит прямой и/или косвенной основой для создания производных посредством множественного наследования; только одна его копия разделяется всеми его производными классами
Абстрактный класс Класс, который поддерживает интерфейс для производных классов и который может быть использован только в качестве базового; используется как макет для построения других классов
Интерфейсный класс Класс, который используется для установки интерфейса других классов
Узловой класс Класс, функции которого расширены за счет добавления новых членов к тем, которые были унаследованы от базового класса
Доменный класс Класс, созданный для имитации некоторого элемента в конкретной предметной области; значение класса связано с этой предметной областью
Составной класс Класс, который содержит другие классы; имеет с этими классами отношения типа «целое-часть»
Конкретный класс Класс, реализация которого определена, что позволяет объявлять экземпляры этого класса; он не предполагается для использования в качестве базового класса и не прелусматривает попыток создавать операции общего характера
Каркасный класс Класс (или коллекция классов), который имеет предопределенную структуру и представляет обобщенный характер функционирования
Безусловно, эти типы классов особенно полезны для проектов, в которых предполагается реализовать параллельность. Дело в том, что они позволяют внедрить принцип компоновки из стандартных блоков. Мы обычно начинаем с примитивных компонентов, используя их для построения классов синхронизации. Классы синхронизации позволят нам создавать контейнерные и каркасные классы, рассчитанные на безопасное внедрение параллелизма. Каркасные классы представляют собой строительные блоки, предназначенные для таких параллельных архитектур более высокого уровня, как мультиагентные системы и «доски объявлений». На каждом уровне сложность параллельного и распределенного программирования уменьшается благодаря использованию различных типов классов, перечисленных в табл. 11.1.
Читать дальше