Трудности постоянного характера и методологии, привлекаемые для их разрешения
Ко второй категории проблем разработки программного обеспечения относятся те, которые лучше всего описываются выражением "неотъемлемые трудности". Проблемы этого рода уходят корнями в саму сердцевину процесса разработки программ.
Никакими усовершенствованиями инструментальных средства разработки решить эти проблемы невозможно. Скорее, эти проблемы диктуют необходимость применения подходящих методологий, которые могли бы направлять техническую мысль в нужное русло и гарантировать успешное завершение программных проектов, невзирая на трудности.
Неплохим примером ситуаций, которым свойственны неизбежные сложности, является проектирование алгоритмов. Современные объектно-ориентированные языки разработки значительно облегчили инкапсуляцию и организацию кода, но они не в состоянии упростить или автоматизировать собственно проектирование алгоритмов. Несомненно, наличие богатого набора базовых классов, предлагаемых современными программными средами, способствует написанию эффективных алгоритмов, однако проектирование принципиально новых алгоритмов по-прежнему является нелегкой задачей, которая, по всей вероятности, будет оставаться таковой и в ближайшем обозримом будущем. Это имеет место по той простой причине, что алгоритмам, в силу самой их природы, свойственна специфичность, обусловленная конкретикой задачи, и не существует никаких известных общих способов, позволяющих преобразовать ваши намерения в алгоритм, который наилучшим образом соответствовал бы намеченным целям; в подобных случаях автоматизация возможна лишь при условии значительного сужения масштаба задачи и создания специального инструментария для ее решения. То же самое можно сказать и о написании многопоточного кода. Применение усовершенствованных инструментальных средств, языков программирования и библиотек, несомненно, облегчает эту работу и позволяет решать задачи во многих случаях, допускающих строгое описание; вместе с тем, создать универсальную машину, способную разрезáть общие задачи на параллельные ломтики, нам никак не удается. Подобные проблемы являются неизбежными, и их решение требует тщательного проектирования и применения подходящей методологии.
Современные языки программирования и средства графического проектирования позволяют разработчикам полнее реализовывать свои намерения, но не устраняют необходимости в приобретении устойчивых навыков конструирования алгоритмов. Без таких навыков невозможно обойтись при построении критических систем, определяющих поведение и эффективность программного обеспечения. Лучшее, что смогла предложить современная технология программирования, — это упаковка сложных алгоритмов в повторно используемые компоненты и каркасы, и предоставление возможности моделирования взаимодействия компонентов между собой. При таком подходе проектирование критических систем, представляющих общий интерес, могут осуществлять высококлассные специалисты, а остальные разработчики получают возможность повторно использовать эти системы. Проектирование компонентов может быть упрощено, а взаимодействие между авторами компонентов и клиентами сделано более прозрачным за счет применения таких технологий моделирования, как UML (Unified Modeling Language — унифицированный язык моделирования) и панели графического проектирования, но эти технологии не в состоянии снять проблемы внутренней сложности, свойственные процессу проектирования эффективных алгоритмов. Постоянное совершенствование инструментальных средств будет способствовать преодолению временных трудностей, однако трудности постоянного характера, обусловленные самой природой алгоритмов, будут всегда оставаться.
Компоненты находят чрезвычайно широкую применимость, так как позволяют повторно воспользоваться результатами однажды проделанной нелегкой работы, но проектирование алгоритмов от этого нисколько не упрощается. Компонентно-ориентированное проектирование является методологией, возникшей из необходимости помочь программистам справиться с одной из самых неприятных проблем, с которыми приходится сталкиваться при разработке программного обеспечения. В соответствии с этой методологией разработчикам и специалистам в области архитектуры программных систем рекомендуется разбивать свои задачи на раздельные многоуровневые компоненты.
Читать дальше