Дональд Бокс - Сущность технологии СОМ. Библиотека программиста

Здесь есть возможность читать онлайн «Дональд Бокс - Сущность технологии СОМ. Библиотека программиста» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: СПб, Год выпуска: 2001, ISBN: 2001, Издательство: Питер, Жанр: Программирование, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Сущность технологии СОМ. Библиотека программиста: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Сущность технологии СОМ. Библиотека программиста»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

В этой книге СОМ исследуется с точки зрения разработчика C++. Написанная ведущим специалистом по модели компонентных объектов СОМ, она раскрывает сущность СОМ, помогая разработчикам правильно понять не только методы модели программирования СОМ, но и ее основу. Понимание мотивов создания СОМ и ее аспектов, касающихся распределенных систем, чрезвычайно важно для тех разработчиков, которые желают пойти дальше простейших приложений СОМ и стать по-настоящему эффективными СОМ-программистами. Показывая, почему СОМ для распределенных систем (Distributed СОМ) работает именно так, а не иначе, Дон Бокс дает вам возможность применять эту модель творчески и эффективно для ежедневных задач программирования.

Сущность технологии СОМ. Библиотека программиста — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Сущность технологии СОМ. Библиотека программиста», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

// convert a variant to a designated type

// преобразуем вариант к указанному типу (с явным указанием кода локализации)

HRESULT VariantChangeTypeEx(VARIANTARG * plhs, VARIANTARG * prhs, LCID lcid, USHORT wFlags, VARTYPE vtlhs);

Эти функции значительно упрощают управление VARIANT'ами. Чтобы понять, как используются эти API-функции, рассмотрим метод, принимающий VARIANT в качестве [in]-параметра:

HRESULT UseIt([in] VARIANT var);

Следующий фрагмент кода демонстрирует, как передать в этот метод целое число:

VARIANT var;

VariantInit(&var);

// initialize VARIANT

// инициализируем VARIANT

V_VT(&var) = VT_I4;

// set discriminator

// устанавливаем дискриминатор

V_I4(&var) = 100;

// set union

// устанавливаем объединение

HRESULT hr = pItf->UseIt(var);

// use VARIANT

// используем VARIANT

VariantClear(&var);

// free any resources in VARIANT

// освобождаем все ресурсы VARIANT

Отметим, что этот фрагмент кода использует макросы стандартного аксессора (accessor) для доступа к элементам данных VARIANT. Две следующие строки

V_VT(&var) = VT_I4;

V_I4(&var) = 100;

эквивалентны коду, который обращается к самим элементам данных:

var.vt = VT_I4;

var.lVal = 100;

Первый вариант предпочтительнее, так как он может компилироваться на С-трансляторах, которые не поддерживают неименованных объединений.

Ниже приведен пример того, как с помощью приведенной выше технологии реализация метода использует параметр VARIANT в качестве строки:

STDMETHODIMP MyClass::UseIt( /*[in] */ VARIANT var)

{

// declare and init a second VARIANT

// объявляем и инициализируем второй VARIANT

VARIANT var2;

VariantInit(&var2);

// convert var to a BSTR and store it in var2

// преобразуем переменную в BSTR и заносим ее в var2

HRESULT hr = VariantChangeType(&var2, &var, 0, VT_BSTR);

// use the string

// используем строку

if (SUCCEEDED(hr))

{

ustrcpy(m_szSomeDataMember, SAFEBSTR(V_BSTR(&var2)));

// free any resources held by var2

// освобождаем все ресурсы, поддерживаемые var2

VariantClear(&var2);

}

return hr;

}

Отметим, что API-процедура VariantChangeType способна осуществлять сложное преобразование любого переданного клиентом типа из VARIANT в нужный тип (в данном случае BSTR).

Один из последних типов данных, который вызывает дискуссию, – это интерфейс СОМ. Интерфейсы СОМ могут быть переданы в качестве параметров метода одним из двух способов. Если тип интерфейсного указателя известен на этапе проектирования, то тип интерфейса может быть объявлен статически:

HRESULT GetObject([out] IDog **ppDog);

Если же тип на этапе проектирования неизвестен, то разработчик интерфейса может дать пользователю возможность задать тип на этапе выполнения. Для поддержки динамически типизируемых интерфейсов в IDL имеется атрибут [iid_is]:

HRESULT GetObject([in] REFIID riid, [out, iid_is(riid)] IUnknown **ppUnk);

Хотя эта форма будет работать вполне хорошо, следующий вариант предпочтительнее из-за его подобия с QueryInterface:

HRESULT GetObject([in] REFIID riid, [out, iid_is(riid)] void **ppv);

Атрибут [iid_is] можно использовать как с параметрами [in], так и [out] для типов IUnknown * или void *. Для того чтобы использовать параметр интерфейса с динамически типизируемым типом, необходимо просто установить IID указателя требуемого типа:

IDog *pDog = 0; HRESULT hr = pItf->GetObject(IID_IDog, (void**)&pDog);

Соответствующая реализация для инициализации этого параметра просто использовала бы метод QueryInterface для нужного объекта:

STDMETHODIMP Class::GetObject(REFIID riid, void **ppv)

{

extern IUnknown * g_pUnkTheDog;

return g_pUnkTheDog->QueryInterface(riid, ppv);

}

Для уменьшения количества дополнительных вызовов методов между клиентом и объектом указатели интерфейса с динамически типизируемым типом должны всегда использоваться вместо указателей интерфейса со статически типизируемым типом IUnknown.

Атрибуты и свойства

Иногда бывает полезно показать, что объект имеет некие открытые свойства, которые могут быть доступны и/или которые можно модифицировать через СОМ-интерфейс. СОМ IDL позволяет аннотировать методы интерфейса с тем, чтобы данный метод либо модифицировал, либо читал именованный атрибут объекта. Рассмотрим такое определение интерфейса:

[ object, uuid(0BB3DAE1-11F4-11d1-8C84-0080C73925BA) ]

interface ICollie : IDog

{

// Age is a read-only property

// Age (возраст) – это свойство только для чтения

[propget] HRESULT Age([out, retval] long *pVal);

// HairCount is a read/write property

// HairCount (счетчик волос) – свойство для чтения/записи

[propget] HRESULT HairCount([out, retval] long *pVal);

[propput] HRESULT HairCount([in] long val);

// CurrentThought is a write-only property

// CurrentThought (текущая мысль) – свойство только для записи

[propput] HRESULT CurrentThought([in] BSTR val);

}

Использование атрибутов [propget] и [propput] информирует компилятор IDL, что методы, которые ему соответствуют, должны быть отображены в преобразователи свойств (property mutators) или в аксессоры на языках, явно поддерживающих свойства. Применительно к Visual Basic это означает, что элементами Age , HairCount и CurrentThought можно манипулировать, используя тот же синтаксис, как при обращении к элементам структуры:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Сущность технологии СОМ. Библиотека программиста»

Представляем Вашему вниманию похожие книги на «Сущность технологии СОМ. Библиотека программиста» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Сущность технологии СОМ. Библиотека программиста»

Обсуждение, отзывы о книге «Сущность технологии СОМ. Библиотека программиста» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x