По легенде где-то далеко на востоке существует старинный храм. Обитающие в нем монахи заняты решением единственной задачи: перемещением дисков с одного шеста на другой с соблюдением определенных правил. Первоначально на первом шесте было 64 диска. Когда все диски будут перемещены, настанет конец света.
Попутно разоблачим миф. Похоже, что на самом деле эту задачу впервые сформулировал французский математик Эдуард Люка в 1883 году, и никаких истоков в восточной культуре она не имеет. Сам Люка называл ее «Ханойской башней».
Так что если вас пугает конец света, можете успокоиться. Да и в любом случае для перемещения 64 дисков потребуется 2 64-1 ходов. Небольшой расчет на калькуляторе покажет, что монахи будут заняты своим делом несколько миллионов лет.
Однако вернемся к правилам игры. (Сформулируем их, хотя эту загадку знал уже самый первый студент самого первого факультета информатики.) Имеется шест, на который надето несколько дисков; назовем его исходным. Мы хотим переместить все диски на целевой шест, используя еще один вспомогательный шест как место промежуточного хранения. Проблема в том, что за один ход можно перемещать только один диск; при этом нельзя класть больший диск на меньший.
В следующем примере приведено решение этой задачи с использованием стека. Мы ограничились тремя дисками, потому что для перемещения 64 компьютеру потребовались бы века.
def towers(list)
while !list.empty?
n, src, dst, aux = list.pop
if n == 1
puts "Перемещаем диск с #{src} на #{dst}"
else
list.push [n-1, aux, dst, src]
list.push [1, src, dst, aux]
list.push [n-1, src, aux, dst]
end
end
end
list = []
list.push([3, "a", "c", "b"])
towers(list)
Вот что напечатает эта программа:
Перемещаем диск с а на с
Перемещаем диск с а на b
Перемещаем диск с с на b
Перемещаем диск с а на с
Перемещаем диск с b на а
Перемещаем диск с b на с
Перемещаем диск с а на с
Конечно, классическое решение этой задачи рекурсивно. Но, как мы отмечали, тесная связь между обоими алгоритмами не должна вызывать удивления, так как для рекурсии применяется невидимый системный стек.
def towers(n, src, dst, aux)
if n==1
puts "Перемещаем диск с #{src} на #{dst}"
else
towers(n-1, src, aux, dst)
towers(1, src, dst, aux)
towers(n-1, aux, dst, src)
end
end
towers(3, "а", "с", "b")
Печатается точно такой же результат. Возможно, вам будет интересно знать, что «закомментарили» предложения, осуществляющие вывод, и сравнили время работы. Никому не говорите, но рекурсивное решение оказалось в два раза быстрее!
9.2.4. Более строгая реализация очереди
Мы определим очередь примерно так же, как стек. Если вы хотите защититься от некорректного доступа к структуре данных, рекомендуем поступать аналогично.
class Queue
def initialize
@store = []
end
def enqueue(x)
@store << x
end
def dequeue
@store,shift
end
def peek
@store.first
end
def length
@store.length
end
def empty?
@store.empty?
end
end
Отметим, что класс Queue
имеется в библиотеке thread
для поддержки многопоточных программ. Имеется даже вариант SizedQueue
для организации очереди ограниченного размера.
В упомянутых классах методы имеют короткие имена: enq
и deq
. У них есть также синонимы push
и pop
, что лично мне кажется неоправданным. Это структура данных FIFO, а не LIFO, то есть именно очередь, а не стек.
Разумеется, класс Queue
в библиотеке thread.rb
безопасен относительно потоков. Если вы хотите реализовать такой же класс Stack
, рекомендую взять Queue
в качестве отправной точки. Потребуется внести не так много изменений.
В первом издании книги был длинный пример, демонстрирующий работу с очередями. Но, как и некоторые примеры, касающиеся стеков, он был исключен ради экономии места.
Я не увижу никогда, наверное,
Поэму столь прекрасную как дерево.
Джойс Килмер, «Деревья»
[11] Пер. Я. Фельдмана. — Прим. ред.
В информатике идея дерева считается интуитивно очевидной (правда, изображаются они обычно с корнем наверху, а листьями снизу). И немудрено, ведь в повседневной жизни мы постоянно сталкиваемся с иерархическими данными: генеалогическое древо, организационная схема компании, структура каталогов на диске.
Читать дальше
Конец ознакомительного отрывка
Купить книгу