Игра 23.
В этой игре вы не можете охарактеризовать ситуации числом спичек, оставшихся в кучке, потому что этого недостаточно; нужно еще знать, сколько спичек только что было взято, так как именно это определяет максимальное число спичек, которые вы можете взять. Поэтому нужно определить ситуацию парой
p : число спичек, оставшихся в кучке,
q : число спичек, которое только что было взято.
Положение 0 является выигрывающим, каково бы ни было число спичек, только что взятых, чтобы достичь этого состояния:
SG(0, q ) = 0.
Исходя из 1, мы всегда проигрываем, поскольку обязаны взять единственную оставшуюся спичку:
SG(1, q ) = 1.
Если у вас осталось две спички, то всегда можно одну взять и одну оставить, следовательно, SG(2, q ) ≠ 1, или можно взять две и закончить игру:
SG(2, q ) = 2.
Начиная с трех, выбор меняется.
Для 3, 1 ваш противник может взять 1 и оставить пару 2, 1, следовательно, SG(3, 1) ≠ 2, либо взять 2 и оставить пару 1, 2, так что SG(3, 1) ≠ 1. Но большее количество изымать нельзя. Наименьшее неотрицательное целое, отличное от 1 и 2, есть 0:
SG(3, 1) = 0.
Если вы оставляете 3, взяв больше, чем одну спичку, то противник может взять и 3, достигая 0 с SG (0, 3) = 0, и, следовательно,
SG(3, q > 1) = 3.
Все, что от вас здесь требуется — продолжить это изучение достаточно далеко, чтобы дать компьютеру список выигрывающих положений, — и тогда ваша программа будет непобедимой.
Игра 24.
Я много раз излагал нижеследующее различным программистам и каждый раз оставался в недоумении, видя, что они не считают это «очевидным».
Вы играете в «Гениального отгадчика», вы ищете неизвестную комбинацию; чтобы сделать это, вы предлагаете комбинации c 1, c 2, …, c k . Для каждой из них вы получаете ответ о числе белых и черных шашек:
б 1, ч 1; б 2, ч 2; …; 6 k , ч k .
Следующая предлагаемая комбинация должна быть такой, которая при сравнении с c 1дает ч 1черных и б 1белых шашек; …; при сравнении с c k она должна давать ч k черных и б k белых шашек. Почему? Вы ищете неизвестную комбинацию. Но эта комбинация дает при сравнении с комбинацией c i именно ч i черных и б i белых шашек. Бесполезно искать решение вне множества комбинаций, обладающих этим свойством: там его не может быть [23] Эти рассуждения безусловно справедливы, если в моем распоряжении остался один-единственный ход — тогда этим ходом я хочу «попасть в десятку», т. е. угадать искомую комбинацию. Если же ход не последний, то моя цель — получить как можно больше информации об искомой комбинации. Может случиться, что для этого выгоднее взять комбинацию вне множества, описанного автором. — Примеч. ред.
.
Следовательно, у вас есть простая стратегия. Допустите, что вы уже каким-то образом выбрали x первых комбинаций, где x фиксировано. Компьютер располагает значениями ч i , б i для i от 1 до x . Вы предоставляете ему возможность перепробовать все комбинации и запоминать только те, которые дают при сравнении с уже испытанными комбинациями правильные значения черных и белых шашек.
Так как возможных комбинаций много, то нужно попытаться не перебирать их все заново при каждой следующей попытке. Вы можете, например, начать с первой позиции новой комбинации. Вы присваиваете ей первый цвет, а затем смотрите, сколько черных шашек он образует с уже испытанными комбинациями. Если он дает черную шашку с комбинацией, с которой ее не следует давать, то этот цвет нужно отбросить. Когда вы уже нашли подходящий цвет для этой позиции, переходите к следующей. Она может дать вам слишком много черных шашек, и это событие очень даже вероятно. Мало таких комбинаций, которые черных шашек не дают совсем, и больше таких, которые дают не более одной. То, что было зафиксировано для первого цвета, не может быть использовано для второго, Но заметьте, что у вас есть и другой случай для отбрасывания: если нужно получить три черных шашки при сравнении с некоторой комбинацией и если первая позиция никакого вклада не вносит, то необходимо, чтобы вторая позиция вносила свой вклад (предполагая, что есть 4 позиции). Действуя таким образом, вы достигаете в конце концов комбинации с правильным числом черных шашек. Тогда нужно проверить белые. Если они принимают нужные значения для всех предложенных комбинаций, то у вас готово новое предложение, и вы получите либо успех, либо новые элементы для сравнения.
Если испытание комбинации потерпело неудачу, то вы переходите к следующей, начиная, если это возможно, с последнего, отступая на одну позицию и испытывая следующий цвет на этой самой позиции.
Читать дальше