Иван Братко - Программирование на языке Пролог для искусственного интеллекта

Здесь есть возможность читать онлайн «Иван Братко - Программирование на языке Пролог для искусственного интеллекта» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 1990, ISBN: 1990, Издательство: Мир, Жанр: Программирование, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Программирование на языке Пролог для искусственного интеллекта: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Программирование на языке Пролог для искусственного интеллекта»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Книга известного специалиста по программированию (Югославия), содержащая основы языка Пролог и его приложения для решения задач искусственного интеллекта. Изложение отличается методическими достоинствами — книга написана в хорошем стиле, живым языком. Книга дополняет имеющуюся на русском языке литературу по языку Пролог.
Для программистов разной квалификации, специалистов по искусственному интеллекту, для всех изучающих программирование.

Программирование на языке Пролог для искусственного интеллекта — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Программирование на языке Пролог для искусственного интеллекта», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Классическая задача на графах — поиск Гамильтонова цикла, т.е. ациклического пути, проходящего через все вершины графа. Используя отношение путь, эту задачу можно решить так:

гамильтон( Граф, Путь) :-

путь( _, _, Граф, Путь),

всевершины( Путь, Граф).

всевершины( Путь, Граф) :-

not (вершина( В, Граф),

not принадлежит( В, Путь) ).

Здесь вершина( В, Граф)означает: В — вершина графа Граф.

Каждому пути можно приписать его стоимость. Стоимость пути равна сумме стоимостей входящих в него дуг. Если дугам не приписаны стоимости, то тогда, вместо стоимости, говорят о длине пути.

Для того, чтобы наши отношения путьи путь1могли работать со стоимостями, их нужно модифицировать, введя дополнительный аргумент для каждого пути:

путь( А, Z, G, P, С)

путь1( A, P1, C1, G, P, С)

Здесь С — стоимость пути P, a C1 — стоимость пути P1. В отношении смежтакже появится дополнительный аргумент, стоимость дуги. На рис. 9.21 показана программа поиска пути, которая строит путь и вычисляет его стоимость.

путь( А, Z, Граф, Путь, Ст) :-

путь1( A, [Z], 0, Граф, Путь, Ст).

путь1( А, [А | Путь1], Ст1, Граф, [А | Путь1], Ст).

путь1( А, [Y | Путь1], Ст1, Граф, Путь, Ст) :-

смеж( X, Y, СтXY, Граф),

not принадлежит( X, Путь1),

Ст2 is Ст1 + СтXY,

путь1( А, [ X, Y | Путь1], Ст2, Граф, Путь, Ст).

Рис. 9.21. Поиск пути в графе: Путь — путь между А и Z в графе Графстоимостью Ст.

Эту процедуру можно использовать для нахождения пути минимальной стоимости. Мы можем построить путь минимальной стоимости между вершинами Верш1, Верш2графа Граф, задав цели

путь( Bepш1, Верш2, Граф, МинПуть, МинСт),

not( путь( Верш1, Верш2, Граф, _, Ст), Ст<���МинСт )

Аналогично можно среди всех путей между вершинами графа найти путь максимальной стоимости, задав цели

путь( _, _, Граф, МаксПуть, МаксСт),

not( путь( _, _, Граф, _, Ст), Ст > МаксСт)

Заметим, что приведенный способ поиска максимальных и минимальных путей крайне неэффективен, так как он предполагает просмотр всех возможных путей и потому не подходит для больших графов из-за своей высокой временной сложности. В искусственном интеллекте задача поиска пути возникает довольно часто. В главах 11 и 12 мы изучим более сложные методы нахождения оптимальных путей.

9.5.3. Построение остовного дерева

Граф называется связным , если между любыми двумя его вершинами существует путь. Пусть G = (V, E) — связный граф с множеством вершин V и множеством ребep E. Остовное дерево графа G — это связный граф T = ( V, E'), где E' — подмножество E такое, что

(1) T — связный граф,

(2) в T нет циклов.

Выполнение этих двух условий гарантирует то, что T — дерево. Для графа, изображенного в левой части рис. 9.18, существует три остовных дерева, соответствующих следующим трем спискам ребер:

Дер1 = [а-b, b-c, c-d]

Дер2 = [а-b, b-d, d-с]

Дер3 = [а-b, b-d, b-c]

Здесь каждый терм вида X-Y обозначает ребро, соединяющее вершины X и Y. В качестве корня можно взять любую из вершин, указанных в списке. Остовные деревья представляют интерес, например в задачах проектирования сетей связи, поскольку они позволяют, имея минимальное число линий, установить связь между любыми двумя узлами, соответствующими вершинам графа.

Определим процедуру

остдерево( G, T)

где T — остовное дерево графа G. Будем предполагать, что G — связный граф. Можно представить себе алгоритмический процесс построения остовного дерева следующим образом. Начать с пустого множества ребер и постепенно добавлять новые ребра, постоянно следя за тем, чтобы не образовывались циклы. Продолжать этот процесс до тех пор, пока не обнаружится, что нельзя присоединить ни одного ребра, поскольку любое новое ребро порождает цикл. Полученное множество ребер будет остовным деревом. Отсутствие циклов можно обеспечить, если придерживаться следующего простого правила: ребро присоединяется к дереву только в том случае, когда одна из его вершин уже содержится в строящемся дереве, а другая пока еще не включена в него. Программа, реализующая эту идею, показана на рис. 9.22. Основное отношение, используемое в этой программе, — это

расширить( Дер1, Дер, G)

Здесь все три аргумента — множества ребер. G— связный граф; Дер1и Дер — два подмножества G, являющиеся деревьями. Дер — остовное дерево графа G, полученное добавлением некоторого (может быть пустого) множества ребер из Gк Дер1. Можно сказать, что " Дер1расширено до Дер".

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Программирование на языке Пролог для искусственного интеллекта»

Представляем Вашему вниманию похожие книги на «Программирование на языке Пролог для искусственного интеллекта» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Программирование на языке Пролог для искусственного интеллекта»

Обсуждение, отзывы о книге «Программирование на языке Пролог для искусственного интеллекта» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x