ba { byte a } *** НЕ НАБИРАЙТЕ КОММЕНТАРИИ!!! ***
wb { word b }
lc { long c }
B { begin }
a=a
a=b
a=c
b=a
b=b
b=c
c=a
c=b
c=c
.
Для каждого объявления вы должны получить сгенерированный код, распределяющий память. Для каждого присваивания вы должны получить код который загружает переменную корректного размера и сохраняет ее, также корректного размера.
Есть только одна небольшая проблема: сгенерированный код неправильный!
Взгляните на код для a=c:
MOVE.L C(PC),D0
LEA A(PC),A0
MOVE.B D0,(A0)
Этот код корректный. Он приведет к сохранению младших восьми бит C в A, что является примлемым поведением. Это почти все, что мы можем ожидать.
Но теперь, взгляните на противоположный случай. Для c=a генерируется такой код:
MOVE.B A(PC),D0
LEA C(PC),A0
MOVE.L D0,(A0)
Это не правильно. Он приведет к сохранению байтовой переменной A в младших восьми битах D0. Согласно правилам для процессора 68000 старшие 24 бита останутся неизменными. Это означаем, что когда мы сохраняем все 32 бита в C, любой мусор, который был в этих старших разрядах, также будет сохранен. Нехорошо.
То, с чем мы сейчас столкнулись назвается проблемой преобразования типов или приведением.
Прежде, чем мы сделаем что-либо с переменными различных типов, даже если это просто их копирование, мы должны быть готовы встретиться с этой проблемой. Это не самая простая часть компилятора. Большинство ошибок, которые я видел в промышленных компиляторах, имели отношение к ошибкам преобразования типов для некоторой неизвестной комбинации аргументов. Как обычно, существует компромисс между сложностью компилятора и потенциальным качеством сгенерированного кода, и, как обычно, мы выберем путь, который сохранит компилятор простым. Я думаю вы надете, что с таким подходом мы можем удерживать потенциальную сложность под достаточным контролем.
ТРУСЛИВЫЙ ВЫХОД
Прежде, чем мы заберемся в детали (и потенциальную сложность) преобразования типов, я хотел бы, чтобы вы видели, что существует один суперпростой способ решения проблемы: просто переводить каждую переменную в длинное целое во время загрузки!
Для этого достаточно добавить всего одну строку в LoadVar, хотя, если мы не собираемся полностью игнорировать эффективность, она должна ограничиваться проверкой IF. Вот измененная версия:
{–}
{ Load a Variable to Primary Register }
procedure LoadVar(Name, Typ: char);
begin
if Typ <> 'L' then
EmitLn('CLR.L D0');
Move(Typ, Name + '(PC)', 'D0');
end;
{–}
(Обратите внимание, что StoreVar не нуждается в подобном изменении).
Если вы выполните некоторые тесты с этой новой версией, вы обнаружите, что теперь все работает правильно, хотя иногда неэффективно. К примеру, рассмотрим случай a=b (для тех же самых объявлений, что показаны выше). Теперь сгенерированный код становится:
CLR.L D0
MOVE.W B(PC),D0
LEA A(PC),A0
MOVE.B D0,(A0)
В этом случае CLR оказывается ненужной, так как результат помещается в байтовую переменную. Небольшая доработка помогла бы нам улучшить его. Однако, все это не так уж плохо, и это типичного рода неэффективность, которую мы видели прежде в нехитрых компиляторах.
Я должен подчеркнуть, что устанавливая старшие разряды в нуль, мы фактически обрабатываем числа как целые числа без знака. Если вместо этого мы хотим обрабатывать их как целые числа со знаком (более вероятный случай) мы должны делать расширение знака после загрузки. Просто для того, чтобы обернуть эту часть дискуссии милой красной ленточкой, давайте изменим LoadVar как показано ниже:
{–}
{ Load a Variable to Primary Register }
procedure LoadVar(Name, Typ: char);
begin
if Typ = 'B' then
EmitLn('CLR.L D0');
Move(Typ, Name + '(PC)', 'D0');
if Typ = 'W' then
EmitLn('EXT.L D0');
end;
{–}
В этой версии байт обрабатывается как беззнаковое число (как в Паскале и Си) в то время как слово обрабатывается как знаковое.
БОЛЕЕ ПРИЕМЛЕМОЕ РЕШЕНИЕ
Как мы видели, перевод каждой переменной в длинное слово пока она находится в памяти решает проблему, но это едва ли может быть названо эффективным и, возможно, не было бы приемлемым даже для тех из нас, кто требует не обращать внимания на эффективность. Это означает, что все арифметические операции будут выполняться с 32-битной точностью, что удвоит время выполнения для большинства операций и сделает его еще больше для умножения и деления. Для этих операций мы должны были бы вызывать подпрограммы, даже если данные были бы байтом или словом. Все это слишком походит на уловку, так как уводит нас от всех настоящих проблем.
ОК, значит это решение плохое. Есть ли еще относительно простой способ получить преобразование данных? Можем ли мы все еще сохранять простоту?
Читать дальше