Наконец, было упомянуто и следующее понятие, различные аспекты которого будут служить темой рассмотрения во всех последующих главах. Это фундаментальное понятие отношения множеств, которое часто заменяется терминами связь или соотношение. Данный термин ведет свое происхождение от теории множеств и служит для обозначения любого подмножества упорядоченных кортежей, построенных из элементов некоторых исходных множеств. При этом под кортежем понимается просто набор или список элементов, важно только, чтобы они были упорядочены. Другими словами, если рассматривать первый элемент кортежа, то он всегда будет первым в списке элементов, второй элемент кортежа будет вторым элементом в списке и т. д. Можно ли это записать с использованием специальных обозначений?
Хотя и существует некоторая неоднозначность в принятых обозначениях, кортеж из двух элементов удобно обозначать как , из трех элементов – и т. д. При этом отдельные элементы могут принадлежать как одному и тому же множеству, так и различным множествам. Важно иметь в виду, что порядок выбора элементов для построения кортежей строго фиксирован для конкретной задачи. Речь идет о том, что первый элемент всегда выбирается из первого множества, второй – из второго, и т. д:
Отношение в этом случае будет характеризовать способ или семантику выбора отдельных элементов из одного или нескольких множеств для подобного упорядоченного списка. В этом смысле взаимосвязь является частным случаем отношения, о чем будет сказано в последующем. К сожалению, диаграммы Венна не предназначены для иллюстрации отношений в общем случае. Однако отношения послужили исходной идеей для развития другой теории, которая даже в своем названии несет отпечаток графической нотации, а именно – теории графов. В этой связи наиболее важным является тот факт, что теоретико-множественные отношения послужили также основой для разработки реляционной алгебры в теории реляционных баз данных. Развитие последней привело к тому, что в последние годы именно реляционные СУБД конкретных фирм доминируют на рынке соответствующего программного обеспечения.
Граф можно рассматривать как графическую нотацию для бинарного отношения двух множеств. Бинарное отношение состоит из таких кортежей или списков элементов, которые содержат только два элемента некоторого множества. Хотя основные понятия теории графов получили свое развитие задолго до появления теории множеств как самостоятельной научной дисциплины, формальное определение графа удобно представить в теоретико-множественных терминах.
Графом называется совокупность двух множеств: множества точек или вершин и множества соединяющих их линий или ребер. Формально граф задается в виде двух множеств: G=(V, Е), где V={v1v2, ..., vn} – множество вершин графа, а Е={е1, е2, ..., еm} – множество ребер графа. Натуральное число n определяет общее количество вершин конкретного графа, а натуральное число m – общее количество ребер графа. Следует заметить, в общем случае не все вершины графа могут соединяться между собой, что ставит в соответствие каждому графу некоторое бинарное отношение PQ, состоящее из всех пар вида , где vi, vj = V. При этом пара и, соответственно, пара принадлежат отношению PG в том и только в том случае, если вершины vi и vj соединяются в графе G некоторым ребром ek=Е. Вершины графа изображаются точками, а ребра – отрезками прямых линий. Рядом с вершинами и ребрами записываются соответствующие номера или идентификаторы, позволяющие их идентифицировать однозначным образом.
Примечание 14 Примечание 14 Вообще говоря, графы бывают двух различных типов. Рассмотренное выше определение относится к неориентированному графу, т. е. к такому графу, у которого связывающие вершины ребра не имеют направления или ориентации. Кроме неориентированных графов существуют ориентированные графы, которые определяются следующим образом. Ориентированный граф также задается в виде двух множеств G=(V, E), где V={v1, v2, ...,vn} – множество вершин графа, а E={е1, е2,...,еm] – множество дуг графа. Натуральное число n определяет общее количество вершин конкретного графа, а натуральное число m – общее количество дуг графа. При этом каждая дуга еk=Е ориентированного графа G имеет свое начало– некоторую единственную вершину vi=V и конец – некоторую единственную вершину vj=V, В отличие от ребра, дуга всегда имеет обозначение со стрелочкой, которая направлена к конечной вершине дуги. Множество дуг ставит в соответствие каждому ориентированному графу некоторое бинарное отношение PG, состоящее из всех пар вида , где vi, vj=V. При этом пара принадлежит отношению PG в том и только в том случае, если вершины vi и vj соединяются в графе G некоторой дугой еk=Е с началом в вершине viи концом в вершине vj.
Читать дальше
Конец ознакомительного отрывка
Купить книгу