Джулиан Бакнелл - Фундаментальные алгоритмы и структуры данных в Delphi

Здесь есть возможность читать онлайн «Джулиан Бакнелл - Фундаментальные алгоритмы и структуры данных в Delphi» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Год выпуска: 2003, ISBN: 2003, Издательство: ДиаСофтЮП, Жанр: Программирование, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Фундаментальные алгоритмы и структуры данных в Delphi: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Фундаментальные алгоритмы и структуры данных в Delphi»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Книга "Фундаментальные алгоритмы и структуры данных в Delphi" представляет собой уникальное учебное и справочное пособие по наиболее распространенным алгоритмам манипулирования данными, которые зарекомендовали себя как надежные и проверенные многими поколениями программистов. По данным журнала "Delphi Informant" за 2002 год, эта книга была признана сообществом разработчиков прикладных приложений на Delphi как «самая лучшая книга по практическому применению всех версий Delphi».
В книге подробно рассматриваются базовые понятия алгоритмов и основополагающие структуры данных, алгоритмы сортировки, поиска, хеширования, синтаксического разбора, сжатия данных, а также многие другие темы, тесно связанные с прикладным программированием. Изобилие тщательно проверенных примеров кода существенно ускоряет не только освоение фундаментальных алгоритмов, но также и способствует более квалифицированному подходу к повседневному программированию.
Несмотря на то что книга рассчитана в первую очередь на профессиональных разработчиков приложений на Delphi, она окажет несомненную пользу и начинающим программистам, демонстрируя им приемы и трюки, которые столь популярны у истинных «профи». Все коды примеров, упомянутые в книге, доступны для выгрузки на Web-сайте издательства.

Фундаментальные алгоритмы и структуры данных в Delphi — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Фундаментальные алгоритмы и структуры данных в Delphi», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

end;

function TtdMinStandardPRNG.AsDouble : double;

const

a = 16807;

m = 2147483647;

q = 127773; {равно m diva}

r = 2836; {равно m mod a}

OneOverM : double = 1.0 / 2147483647.0;

var

k : longint;

begin

k := FSeed div q;

FSeed := (a * (FSeed - (k * q))) - (k * r);

if (FSeed <= 0) then

inc( FSeed, m);

Result := FSeed * OneOverM;

end;

function GetTimeAsLong : longint;

{$IFDEF Delphi1}

assembler;

asm

mov ah, $2С

call DOS3Call

mov ax, cx end;

{$ENDIF}

{$IFDEF Delph2Plus}

begin

Result := longint(GetTickCount);

end;

{$ENDIF}

{$IFDEF KylixlPlus}

var

T : TTime_t;

begin

_time(@T);

Result := longint(T);

end;

{$ENDIF}

procedure TtdMinStandardPRNG.msSetSeed(aValue : longint);

const

m = 2147483647;

begin

if (aValue > 0) then

FSeed := aValue

else

FSeed := GetTimeAsLong;

{убедиться, что значение начального числа находится в переделах от 0 до m-1 включительно}

if (FSeed >=m-1) then

FSeed := FSeed - (m - 1) + 1;

end;

Как несложно заметить в коде метода AsDouble, метод Шрейга выглядит гораздо сложнее, нежели простая формула X(_n+1_) = aX(_n_) mod m со значениями а = 16807 и m = 2(^31^) - 1. Тем не менее, используя достаточно сложные математические выкладки, можно доказать его равенство приведенной формуле.

Кроме того, как уже упоминалось, в генераторе случайных чисел подобного типа использование нуля в качестве начального числа нежелательно, поскольку тогда бы все генерируемые значения были бы нулевыми. Поэтому метод msSetSeed использует значение 0 в качестве флага при необходимости установки начального числа по значению системных часов. К сожалению, для выполнения этой операции в 16- и 32-разрядных системах Windows используется разный код.

Создадим класс случайных чисел, который будет использовать системный генератор случайных чисел - функцию Random. В листинге 6.4 показан код метода AsDouble для такого класса.

Листинг 6.4. Использование в классе системной функции Random

function TtdSystemPRNG.AsDouble : double;

var

OldSeed : longint;

begin

OldSeed := System.RandSeed;

System.RandSeed := Seed;

Result := System.Random;

Seed := System.RandSeed;

System.RandSeed := OldSeed;

end;

Теперь, когда в нашем арсенале имеется два генератора случайных чисел, можно перейти к обсуждению методов тестирования их результатов.

Тестирование

В основе всех тестов будут лежать одни и те же принципы. Мы будем генерировать большое количество случайных чисел из диапазона от 0.0 (включительно) до 1.0 (исключительно). Получаемые в результате работы генераторов значения будут разбиваться на несколько категорий, будет подсчитываться количество значений в каждой категории, а затем вероятность попадания значения в каждую категорию. На основе результатов вычислений будет определяться значение функции хи-квадрат, на основе которого будет прогоняться тест по критерию хи-квадрат. При этом количество степеней свободы будет на единицу меньше, чем количество категорий значений. Это было всего лишь краткое введение, но через несколько минут мы приступим к собственно тестированию.

Тест на однородность

Первый тест самый простой - проверка на однородность. О нем мы уже говорили. Фактически случайные числа будут проверяться на равномерность распределения по диапазону от 0.0 до 1.0. Разобьем весь диапазон на 100 поддиапазонов, сформируем набор из 1000000 случайных чисел и вычислим количество значений, попавших в каждый поддиапазон. В поддиапазоне 0 будут находиться значения от 0.00 до 0.01, в поддиапазоне 1 - значения от 0.01 до 0.02 и т.д. Вероятность попадания случайного числа в любой поддиапазон составляет 0.01. Для полученного распределения вычислим значение параметра хи-квадрат и сравним его с данными для стандартного распределения хи-квадрат, находящимися в строке, для 99 степеней свободы.

Листинг 6.5. Тест на однородность

procedure UnifomityTest(RandGen : TtdBasePRNG;

var ChiSquare : double; var DegsFreedo : integer);

var

BucketNumber, i : integer;

Expected, ChiSqVal : double;

Bucket : array [0..pred(Uniformitylntervals) ] of integer;

begin

{вычислить количество чисел в каждом поддиапазоне}

FillChar(Bucket, sizeof(Bucket), 0);

for i := 0 to pred(UniformityCount) do

begin

BucketNumber := trunc(RandGen.AsDouble * Uniformitylntervals);

inc (Bucket [BucketNumber]);

end;

{вычислить значение параметра xu-квадрат}

Expected := UniformityCount / Uniformitylntervals;

ChiSqVal := 0.0;

for i := 0 to pred(Uniformitylntervals) do

ChiSqVal := ChiSqVal + (Sqr (Expected - Bucket [i]) / Expected);

{вернуть значения}

ChiSquare := ChiSqVal;

DegsFreedom := pred(Uniformitylntervals);

end;

Тест на пропуски

Второй тест, который мы проведем, - тест на пропуски - несколько сложнее первого. Тест на пропуски гарантирует, что последовательность случайных чисел не будет попадать сначала в один поддиапазон, а затем в другой, третий и т.д., несмотря на то, что в целом значения будут распределены равномерно по всему диапазону. Определим в диапазоне поддиапазон, скажем, первую половину - от 0.0 до 0.5. Сформируем набор случайных чисел. Для каждого генерируемого числа будем проверять, попадает ли оно в выбранный поддиапазон (попадание) или нет (промах). В результате проверок будет получена последовательность попаданий и промахов. Найдите последовательности из одного и большего количества промахов (такие последовательности называются пропусками, отсюда и название теста - тест на пропуски). Вы получите последовательности из одного, двух и даже большего количества промахов. Разбейте длины пропусков на категории. Если известно, что вероятность попадания равна p (в нашем случае она будет равна длине выбранного поддиапазона), то вероятность промаха будет (1 -p). На основе этих данных можно определить вероятность возникновения пропуска из одного промаха — (1 -p)p, двух промахов — (1 -p)(^2^)p, n промахов - (1 -p)(^n^)p, а, следовательно, вычислить ожидаемое количество пропусков любой длины. После этого применим тест по критерию хи-квадрат. Будем использовать 10 категорий пропусков (поскольку вероятность возникновения пропусков длиной 11 и более промахов очень мала, все пропуски длиной 10 и более будут учитываться в последней категории;

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Фундаментальные алгоритмы и структуры данных в Delphi»

Представляем Вашему вниманию похожие книги на «Фундаментальные алгоритмы и структуры данных в Delphi» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


libcat.ru: книга без обложки
Михаил Краснов
Сергей Талипов - Базы данных на Delphi 7
Сергей Талипов
Отзывы о книге «Фундаментальные алгоритмы и структуры данных в Delphi»

Обсуждение, отзывы о книге «Фундаментальные алгоритмы и структуры данных в Delphi» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x