Алгоритм поиска в дереве бинарного поиска имитирует стандартный бинарный поиск в массиве или в связном списке. В каждом узле мы принимаем решение, какой дочерней связью нужно следовать. При этом можно игнорировать все узлы, находящиеся в другом дочернем дереве. Если дерево сбалансировано, алгоритм поиска является операцией типа O(log(n)). Другими словами, среднее время, затрачиваемое на поиск любого элемента, пропорционально log(_2_) от числа элементов в дереве. Под сбалансированным мы будем понимать дерево, в котором длина пути от любого листа до корневого узла приблизительно одинакова, причем дерево имеет минимальное количество уровней, необходимое для данного количества присутствующих узлов.
Листинг 8.13. Поиск в дереве бинарного поиска
function TtdBinarySearchTree.bstFindItem(aItem : pointer;
var aNode : PtdBinTreeNode;
var aChild : TtdChildType): boolean;
var
Walker : PtdBinTreeNode;
CmpResult : integer;
begin
Result := false;
{если дерево пусто, вернуть нулевой и левый узел для указания того, что новый узел, в случае его вставки, должен быть корневым}
if (FCount = 0) then begin
aNode := nil;
aChild := ctLeft;
Exit;
end;
{в противном случае перемещаться по дереву}
Walker := FBinTree.Root;
CmpResult := FCompare(aItem, Walker^.btData);
while (CmpResult <> 0) do
begin
if (CmpResult < 0) then begin
if (Walker^.btChild[ctLeft] = nil) then begin
aNode := Walker;
aChild := ctLeft;
Exit;
end;
Walker := Walker^.btChild[ctLeft];
end
else begin
if (Walker^.btChild[ctRight] =nil) then begin
aNode := Walker;
aChild := ctRight;
Exit;
end;
Walker := Walker^.btChild[ctRight];
end;
CmpResult := FCompare(aItem, Walker^.btData);
end;
Result := true;
aNode := Walker;
end;
function TtdBinarySearchTree.Find(aKeyItem : pointer): pointer;
var
Node : PtdBinTreeNode;
ChildType : TtdChildType;
begin
if bstFindItem(aKeyItem, Node, ChildType) then
Result := Node^.btData else
Result := nil;
end;
В коде, представленном в листинге 8.13, не используются отдельные ключи для каждого элемента. Вместо этого предполагается, что свойство упорядочения дерева бинарного поиска определяется функцией сравнения, подобно тому, как это делалось в отсортированных связных списках, списках с пропусками и т.п. Функция сравнения дерева бинарного поиска объявляется конструктором Create.
Метод Find использует внутренний метод bstFindItem. Этот метод должен вызываться для достижения двух различных целей. Во-первых, самим методом Find, и, во-вторых, методом, который вставляет новые узлы в дерево (этот метод мы рассмотрим несколько позже). Соответственно, если элемент не был найден, метод будет возвращать место, в которое он должен быть вставлен. Естественно, эта функция не требуется для простого поиска: нам нужно только знать, существует ли элемент, и если существует, то получить элемент целиком обратно.
В представленном коде следует также отметить, что класс используется внутренний экземпляр TtdBinaryTree, названный FBinTree, для хранения фактического бинарного дерева. Как будет показано, класс дерева бинарного поиска делегирует все операции бинарного дерева этому внутреннему бинарному дереву. Легко заметить, что от этого внутреннего объекта требуется получить только корневой узел. С этого момента остается только перемещаться по узлам.
Вставка в дереве бинарного поиска
Мы можем существенно упростить операцию вставки для пользователя дерева бинарного поиска: он должен предоставить только сам элемент. Пользователь не должен также беспокоиться о том, какой узел становится родительским, и в качестве какого дочернего узла добавляется новый узел. Все это, скрывая подробности, может выполнить дерево бинарного поиска, используя в качестве руководства к действию порядок элементов внутри дерева.
Фактически, вставить новый элемент в дерево бинарного поиска достаточно просто, и большая часть этого процесса уже была рассмотрена. Мы ищем элемент до тех пор, пока не достигаем точки, когда дальнейший спуск оказывается невозможен, поскольку дочерняя связь, которой нужно было бы следовать, является нулевой. К этому моменту мы знаем, где должен размещаться элемент, - в точке, где мы должны были остановиться. При этом известно, каким дочерним узлом должен быть элемент, и, естественно, мы останавливаемся на родительском узле нового узла. Обратите также внимание, что используемый алгоритм поиска места для вставки нового элемента гарантирует целостность порядка элементов в дереве бинарного поиска.
Тем не менее, алгоритм вставки сопряжен с одной проблемой. Хотя метод гарантирует создание допустимого дерева бинарного поиска после выполнения операции, созданное дерево может быть неоптимальным или неэффективным. Чтобы понять, о чем идет речь, вставьте элементы a, b, c, d, e и f в пустое дерево бинарного поиска. С элементом а все просто - он становится корневым узлом. Элемент b добавляется в качестве правого дочернего узла элемента a. Элемент c добавляется в качестве правого дочернего узла элемента b и т.д. Результат показан слева на рис. 8.2: он представляет собой длинное вытянутое дерево, которое можно трактовать как связного списка. В идеале желательно, чтобы дерево было более сбалансированным. Для только что созданного вырожденного дерева время поиска пропорционально числу элементов в дереве (О(n)), а не log(_2_) числа элементов (O(log(n))). Возможны также другие случаи вырождения. Например, попытайтесь выполнить следующую последовательность вставок: a, f, b, e, c и d, в результате которой создается явно вырожденное дерево, показанное справа на рис. 8.2.
Читать дальше