Джулиан Бакнелл - Фундаментальные алгоритмы и структуры данных в Delphi

Здесь есть возможность читать онлайн «Джулиан Бакнелл - Фундаментальные алгоритмы и структуры данных в Delphi» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Год выпуска: 2003, ISBN: 2003, Издательство: ДиаСофтЮП, Жанр: Программирование, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Фундаментальные алгоритмы и структуры данных в Delphi: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Фундаментальные алгоритмы и структуры данных в Delphi»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Книга "Фундаментальные алгоритмы и структуры данных в Delphi" представляет собой уникальное учебное и справочное пособие по наиболее распространенным алгоритмам манипулирования данными, которые зарекомендовали себя как надежные и проверенные многими поколениями программистов. По данным журнала "Delphi Informant" за 2002 год, эта книга была признана сообществом разработчиков прикладных приложений на Delphi как «самая лучшая книга по практическому применению всех версий Delphi».
В книге подробно рассматриваются базовые понятия алгоритмов и основополагающие структуры данных, алгоритмы сортировки, поиска, хеширования, синтаксического разбора, сжатия данных, а также многие другие темы, тесно связанные с прикладным программированием. Изобилие тщательно проверенных примеров кода существенно ускоряет не только освоение фундаментальных алгоритмов, но также и способствует более квалифицированному подходу к повседневному программированию.
Несмотря на то что книга рассчитана в первую очередь на профессиональных разработчиков приложений на Delphi, она окажет несомненную пользу и начинающим программистам, демонстрируя им приемы и трюки, которые столь популярны у истинных «профи». Все коды примеров, упомянутые в книге, доступны для выгрузки на Web-сайте издательства.

Фундаментальные алгоритмы и структуры данных в Delphi — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Фундаментальные алгоритмы и структуры данных в Delphi», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Алгоритм поиска в дереве бинарного поиска имитирует стандартный бинарный поиск в массиве или в связном списке. В каждом узле мы принимаем решение, какой дочерней связью нужно следовать. При этом можно игнорировать все узлы, находящиеся в другом дочернем дереве. Если дерево сбалансировано, алгоритм поиска является операцией типа O(log(n)). Другими словами, среднее время, затрачиваемое на поиск любого элемента, пропорционально log(_2_) от числа элементов в дереве. Под сбалансированным мы будем понимать дерево, в котором длина пути от любого листа до корневого узла приблизительно одинакова, причем дерево имеет минимальное количество уровней, необходимое для данного количества присутствующих узлов.

Листинг 8.13. Поиск в дереве бинарного поиска

function TtdBinarySearchTree.bstFindItem(aItem : pointer;

var aNode : PtdBinTreeNode;

var aChild : TtdChildType): boolean;

var

Walker : PtdBinTreeNode;

CmpResult : integer;

begin

Result := false;

{если дерево пусто, вернуть нулевой и левый узел для указания того, что новый узел, в случае его вставки, должен быть корневым}

if (FCount = 0) then begin

aNode := nil;

aChild := ctLeft;

Exit;

end;

{в противном случае перемещаться по дереву}

Walker := FBinTree.Root;

CmpResult := FCompare(aItem, Walker^.btData);

while (CmpResult <> 0) do

begin

if (CmpResult < 0) then begin

if (Walker^.btChild[ctLeft] = nil) then begin

aNode := Walker;

aChild := ctLeft;

Exit;

end;

Walker := Walker^.btChild[ctLeft];

end

else begin

if (Walker^.btChild[ctRight] =nil) then begin

aNode := Walker;

aChild := ctRight;

Exit;

end;

Walker := Walker^.btChild[ctRight];

end;

CmpResult := FCompare(aItem, Walker^.btData);

end;

Result := true;

aNode := Walker;

end;

function TtdBinarySearchTree.Find(aKeyItem : pointer): pointer;

var

Node : PtdBinTreeNode;

ChildType : TtdChildType;

begin

if bstFindItem(aKeyItem, Node, ChildType) then

Result := Node^.btData else

Result := nil;

end;

В коде, представленном в листинге 8.13, не используются отдельные ключи для каждого элемента. Вместо этого предполагается, что свойство упорядочения дерева бинарного поиска определяется функцией сравнения, подобно тому, как это делалось в отсортированных связных списках, списках с пропусками и т.п. Функция сравнения дерева бинарного поиска объявляется конструктором Create.

Метод Find использует внутренний метод bstFindItem. Этот метод должен вызываться для достижения двух различных целей. Во-первых, самим методом Find, и, во-вторых, методом, который вставляет новые узлы в дерево (этот метод мы рассмотрим несколько позже). Соответственно, если элемент не был найден, метод будет возвращать место, в которое он должен быть вставлен. Естественно, эта функция не требуется для простого поиска: нам нужно только знать, существует ли элемент, и если существует, то получить элемент целиком обратно.

В представленном коде следует также отметить, что класс используется внутренний экземпляр TtdBinaryTree, названный FBinTree, для хранения фактического бинарного дерева. Как будет показано, класс дерева бинарного поиска делегирует все операции бинарного дерева этому внутреннему бинарному дереву. Легко заметить, что от этого внутреннего объекта требуется получить только корневой узел. С этого момента остается только перемещаться по узлам.

Вставка в дереве бинарного поиска

Мы можем существенно упростить операцию вставки для пользователя дерева бинарного поиска: он должен предоставить только сам элемент. Пользователь не должен также беспокоиться о том, какой узел становится родительским, и в качестве какого дочернего узла добавляется новый узел. Все это, скрывая подробности, может выполнить дерево бинарного поиска, используя в качестве руководства к действию порядок элементов внутри дерева.

Фактически, вставить новый элемент в дерево бинарного поиска достаточно просто, и большая часть этого процесса уже была рассмотрена. Мы ищем элемент до тех пор, пока не достигаем точки, когда дальнейший спуск оказывается невозможен, поскольку дочерняя связь, которой нужно было бы следовать, является нулевой. К этому моменту мы знаем, где должен размещаться элемент, - в точке, где мы должны были остановиться. При этом известно, каким дочерним узлом должен быть элемент, и, естественно, мы останавливаемся на родительском узле нового узла. Обратите также внимание, что используемый алгоритм поиска места для вставки нового элемента гарантирует целостность порядка элементов в дереве бинарного поиска.

Тем не менее, алгоритм вставки сопряжен с одной проблемой. Хотя метод гарантирует создание допустимого дерева бинарного поиска после выполнения операции, созданное дерево может быть неоптимальным или неэффективным. Чтобы понять, о чем идет речь, вставьте элементы a, b, c, d, e и f в пустое дерево бинарного поиска. С элементом а все просто - он становится корневым узлом. Элемент b добавляется в качестве правого дочернего узла элемента a. Элемент c добавляется в качестве правого дочернего узла элемента b и т.д. Результат показан слева на рис. 8.2: он представляет собой длинное вытянутое дерево, которое можно трактовать как связного списка. В идеале желательно, чтобы дерево было более сбалансированным. Для только что созданного вырожденного дерева время поиска пропорционально числу элементов в дереве (О(n)), а не log(_2_) числа элементов (O(log(n))). Возможны также другие случаи вырождения. Например, попытайтесь выполнить следующую последовательность вставок: a, f, b, e, c и d, в результате которой создается явно вырожденное дерево, показанное справа на рис. 8.2.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Фундаментальные алгоритмы и структуры данных в Delphi»

Представляем Вашему вниманию похожие книги на «Фундаментальные алгоритмы и структуры данных в Delphi» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


libcat.ru: книга без обложки
Михаил Краснов
Сергей Талипов - Базы данных на Delphi 7
Сергей Талипов
Отзывы о книге «Фундаментальные алгоритмы и структуры данных в Delphi»

Обсуждение, отзывы о книге «Фундаментальные алгоритмы и структуры данных в Delphi» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x