Олег Цилюрик - QNX/UNIX - Анатомия параллелизма

Здесь есть возможность читать онлайн «Олег Цилюрик - QNX/UNIX - Анатомия параллелизма» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Санкт-Петербург, Год выпуска: 2006, ISBN: 2006, Издательство: Символ-Плюс, Жанр: Программирование, ОС и Сети, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

QNX/UNIX: Анатомия параллелизма: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «QNX/UNIX: Анатомия параллелизма»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Книга адресована программистам, работающим в самых разнообразных ОС UNIX. Авторы предлагают шире взглянуть на возможности параллельной организации вычислительного процесса в традиционном программировании. Особый акцент делается на потоках (threads), а именно на тех возможностях и сложностях, которые были привнесены в технику параллельных вычислений этой относительно новой парадигмой программирования. На примерах реальных кодов показываются приемы и преимущества параллельной организации вычислительного процесса. Некоторые из результатов испытаний тестовых примеров будут большим сюрпризом даже для самых бывалых программистов. Тем не менее излагаемые техники вполне доступны и начинающим программистам: для изучения материала требуется базовое знание языка программирования C/C++ и некоторое понимание «устройства» современных многозадачных ОС UNIX.
В качестве «испытательной площадки» для тестовых фрагментов выбрана ОСРВ QNX, что позволило с единой точки зрения взглянуть как на специфические механизмы микроядерной архитектуры QNX, так и на универсальные механизмы POSIX. В этом качестве книга может быть интересна и тем, кто не использует (и не планирует никогда использовать) ОС QNX: программистам в Linux, FreeBSD, NetBSD, Solaris и других традиционных ОС UNIX.

QNX/UNIX: Анатомия параллелизма — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «QNX/UNIX: Анатомия параллелизма», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

На результаты наших оценок очень существенное влияние оказывают процессы кэширования памяти, что можно легко увидеть, экспериментируя с приложением, но затраты (число процессорных тактов) на выполнение fork()будут оценены очень грубо:

T = 3000000 + Р * 6000

где Р— размер (в килобайтах) файла образа программы, в которой выполняется fork().

Теперь проведем столь же элементарный альтернативный тест ( файл p2-2.cc ) по созданию потока. (В случае потока время гораздо проще измерять и с более высокой точностью, но мы для сравнимости результатов почти текстуально сохраним предыдущий пример с включением в результат операторов завершения дочернего объекта, ожидания результата и т.д.)

Затраты на создание потока

void* threadfunc(void* data) { pthread_exit(NULL); }

int main(int argc, char *argv[]) {

uint64_t t = ClockCycles();

pthread_t tid;

pthread_create(&tid, NULL, threadfunc, NULL);

pthread_join(tid, NULL);

t = ClockCycles() - t;

cout << "Thread time, " << cycle2milisec(t) << " msec. [" << t <<

" cycles]" << endl;

exit(EXIT_SUCCESS);

}

На результаты этого теста (в отличие от предыдущего) уже достаточно существенно влияет приоритет, под которым выполняется задача, поэтому проделаем его с достаточно высоким приоритетом (29):

# nice -n-19 p2-2

Thread time: 0.147139 msec. [78667 cycles]

# nice -n-19 p2-1

Fork time: 2.5366 msec. [1356179 cycles]

Вот так… время порождения нового «пустого» процесса, даже минимального размера (размер исполняемого файла этого процесса чуть больше 4 Кбайт), почти в 20 раз больше затрат на создание потока! А для процессов большого объема эта разница может доходить до 3–4 порядков (см. результаты первого теста).

Далее рассмотрим сравнительную эффективность с другой стороны: будет ли диспетчеризация многочисленных потоков, принадлежащих одному процессу, эффективнее диспетчеризации такого же количества отдельных процессов? Для процессов задача текстуально выглядит так ( файл p4-1.cc ):

void workproc(int how = 1) {

const int nsingl = 1000, msingl = 30;

for (int j = 0; j < how; j++) // ... имитация вычислений

for (uint64_t i = 0; i < msingl; i++)

for (uint64_t k = 0; k < nsingl; k++)

k = (k + 1) - 1;

}

int main(int argc, char *argv[]) {

int numpar = 1;

if (argc > 1 && atoi(argv[1]) > 0)

numpar = atoi(argv[1]);

_clockperiod clcold;

ClockPeriod(CLOCK_REALTIME, NULL, &clcold, 0);

if (argc > 2 && atoi(argv[2]) > 0) {

_clockperiod clcnew = { atoi(argv[2]) * 1000, 0 };

ClockPeriod(CLOCK_REALTIME, &clcnew, &clcold, 0);

}

timespec interval;

sched_rr_get_interval(0, &interval);

cout << "Rescheduling interval = "

<< (double)interval.tv_nsec / 1000000 << " msec." << endl;

uint64_t t = ClockCycles();

for (int i = 0, i < numpar; i++) {

pid_t pid = fork();

if (pid == -1) perror("fork"), exit(EXIT_FAILURE);

if (pid == 0) {

workproc(1000);

exit(EXIT_SUCCESS);

}

}

for (int i = 0; i < numpar; i++) wait3(NULL, WEXITE0, NULL);

t = ClockCycles() - t;

cout << "Forks scheduling time" << cycle2milisec(t)

<< " msec [" << t << " cycles]" << endl;

ClockPeriod(CLOCK_REALTIME, &clcold, NULL, 0);

exit(EXIT_SUCCESS);

}

Имитатором активной вычислительной нагрузки программы является функция workproc(), отличительной особенностью которой является то, что она при активной (хоть и бессмысленной) загрузке процессора не делает на всем интервале своего выполнения никаких системных вызовов, которые могли бы привести к вытеснению выполняющего ее потока.

Первым параметром программы является количество процессов, на которые распределяется общий объем вычислений. Но самое главное: начнем управлять размером периода временного системного тика.

Примечание

По умолчанию системный тик (для QNX 6.2.1) равен 1 мсек., но в принципе его значение можно уменьшать функцией ClockPeriod()вплоть до 10 мксек. Кстати, в описании именно этой функции присутствует замечание о том, что « …период решедулирования равен 4 тикам, и это соотношение в системе нельзя изменить ».

Второй параметр запуска программы (при его наличии) и определяет размер периода системного тика, выраженный в микросекундах. (В конце выполнения задач подобного рода, изменяющих размер системного тика, нужно обязательнопринять меры к восстановлению его прежнего значения даже в случаях экстремального и аварийного завершения задачи!) Для повышения достоверности тестов величина размера интервала диспетчеризации контролируется независимым образом (вызовом sched_rr_get_interval()).

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «QNX/UNIX: Анатомия параллелизма»

Представляем Вашему вниманию похожие книги на «QNX/UNIX: Анатомия параллелизма» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «QNX/UNIX: Анатомия параллелизма»

Обсуждение, отзывы о книге «QNX/UNIX: Анатомия параллелизма» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x