Лэнс Фотноу - Золотой билет

Здесь есть возможность читать онлайн «Лэнс Фотноу - Золотой билет» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2016, ISBN: 2016, Издательство: Лаборатория знаний, Жанр: Прочая околокомпьтерная литература, Математика, sci_popular, Технические науки, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Золотой билет: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Золотой билет»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

«Золотой билет» – великолепное введение в P/NP-проблему, в котором описаны история этой задачи и ее влияние на нашу жизнь. В этой информативной и занимательной книге Лэнс Фортноу прослеживает работу, которая велась над задачей во времена холодной войны по обе стороны «железного занавеса», и приводит примеры ее возникновения во множестве дисциплин, включая экономику, физику и биологию.
Для студентов и специалистов в области теории вычислений, всех, интересующихся современными проблемами в математике.
В формате pdf A4 сохранен издательский дизайн.

Золотой билет — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Золотой билет», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Какая нам польза от того, что P и NP не равны? Доказав неравенство, мы будем уверены в сохранности наших персональных данных и сможем создавать псевдослучайные числа, неотличимые от настоящих.

Изменят ли ситуацию компьютеры будущего, основанные на принципах квантовой механики? Снимут ли они проблему «P против NP»? Маловероятно, хотя с их помощью мы сможем решать некоторые недоступные современным машинам задачи, например, раскладывать большие числа на множители. Кстати, квантовая механика даст нам абсолютно стойкие шифры вне зависимости от того, равны классы P и NP или не равны.

Так что же дальше? Похоже, самые большие трудности ждут нас впереди. Как организовать совместную работу нескольких компьютеров над одной задачей? Как проанализировать колоссальные объемы данных, которые мы создаем изо дня в день? Каким станет мир, когда интернет людей превратится в интернет вещей? Чем больше перед нами возникает подобных задач, тем большую значимость приобретает вопрос о равенстве P и NP.

Решение задачи о разбиении

Упомянутые ранее тридцать восемь чисел

14175, 15055, 16616, 17495, 18072, 19390, 19731, 22161, 23320, 23717, 26343, 28725, 29127, 32257, 40020, 41867, 43155, 46298, 56734, 57176, 58306, 61848, 65825, 66042, 68634, 69189, 72936, 74287, 74537, 81942, 82027, 82623, 82802, 82988, 90467, 97042, 97507, 99564

можно разбить на две равные группы следующим образом:

15055, 16616, 19390, 22161, 26343, 40020, 41867, 43155, 46298, 57176, 58306, 65825, 66042, 69189, 74537, 81942, 82623, 82988, 90467

и 14175, 17495, 18072, 19731, 23320, 23717, 28725, 29127, 32257, 56734, 61848, 68634, 72936, 74287, 82027, 82802, 97042, 97507, 99564.

Числа каждой группы дают в сумме ровно 1000000.

Глава 2. Совершенный мир

Представьте, что вас просят написать статью обо всех переменах, вызванных развитием интернета за последние двадцать лет. Вы ведь упомянете о компактном устройстве, которое лежит у вас в кармане и мгновенно предоставляет доступ к любой открытой информации? И о новом типе общения, сложившемся в социальных сетях? И о том, как трансформировалось кино и музыка? О нововведениях в работе издательств и новостных агентств? Изменений слишком много, и в одну статью их явно не вместить. А теперь вообразите, что сейчас начало девяностых и вы пишете статью, когда все это еще только предстоит…

Равенство P и NP будет означать, что у нас имеется универсальный эффективный алгоритм для всех NP-задач. Мир изменится настолько сильно, что развитие интернета превратится во второстепенный исторический факт. Описать сейчас подробно эти изменения или хотя бы предсказать основные последствия от внедрения новых технологий не представляется возможным.

Совершенный мир, в котором P = NP, вряд ли когда-нибудь станет реальностью. Однако заглянуть в него одним глазком мы все-таки можем. Представим наше общество через несколько лет после появления универсального эффективного алгоритма; перенесемся в далекий 2026-й и посмотрим для начала, как этот мир развивался.

Урбанский алгоритм

В 2016 году чешский математик Милена Павел послала по электронной почте письмо. Во вложении было описание универсального эффективного алгоритма для решения NP-задач. После долгих и тщательных проверок научное сообщество пришло к единому мнению: алгоритм работает, и проблема равенства P и NP наконец решена. Свою работу Милена скромно назвала «Об открытой проблеме Стивена Кука», а вот New York Times выпустила статью с громким и предельно кратким заголовком: «P = NP».

В 2018 году Милена Павел была удостоена Филдсовской премии. Эту престижную математическую награду впервые вручили женщине. Годом позже Математический институт Клэя выписал на имя Милены чек в один миллион долларов. Григорий Перельман был первым, кто решил одну из задач тысячелетия; Милена стала второй и в отличие от Перельмана свой приз забрала. Часть денег (точные цифры не раскрываются) она пожертвовала на учреждение стипендий в своем родном университете в Праге.

В теории алгоритм Милены стал настоящим прорывом; в реальности же он работал слишком долго и потому оказался совершенно неприменим. В 2017 году российский ученый Михаил Боров придумал интересную модификацию и ускорил алгоритм на порядок, однако до практического применения по-прежнему было очень и очень далеко.

Годом позже старшекурсники Университета Цинхуа в Пекине оптимизировали алгоритм Борова и запустили его на самом быстром компьютере в мире (который на тот момент находился в Китае). Меньше чем через неделю новый алгоритм разобрался со средней задачей о клике и решил несколько других типичных проблем из класса NP. Ряд промышленных гигантов, среди которых были Boeing и Daimler-Benz , заключили с университетом контракт на разработку решения особо хитрых оптимизационных задач. В результате новое воздушное судно «Боинг-797» получило крыло улучшенной конструкции, а вместе с ним и возможность летать из Лондона в Сидней без остановок.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Золотой билет»

Представляем Вашему вниманию похожие книги на «Золотой билет» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Золотой билет»

Обсуждение, отзывы о книге «Золотой билет» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x