Paul Graham - Essays

Здесь есть возможность читать онлайн «Paul Graham - Essays» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Прочая околокомпьтерная литература, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Essays: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Essays»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Essays — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Essays», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Code size is important, because the time it takes to write a program depends mostly on its length. If your program would be three times as long in another language, it will take three times as long to write-- and you can't get around this by hiring more people, because beyond a certain size new hires are actually a net lose. Fred Brooks described this phenomenon in his famous book The Mythical Man-Month, and everything I've seen has tended to confirm what he said.

So how much shorter are your programs if you write them in Lisp? Most of the numbers I've heard for Lisp versus C, for example, have been around 7-10x. But a recent article about ITA in New Architect magazine said that "one line of Lisp can replace 20 lines of C," and since this article was full of quotes from ITA's president, I assume they got this number from ITA. If so then we can put some faith in it; ITA's software includes a lot of C and C++ as well as Lisp, so they are speaking from experience.

My guess is that these multiples aren't even constant. I think they increase when you face harder problems and also when you have smarter programmers. A really good hacker can squeeze more out of better tools.

As one data point on the curve, at any rate, if you were to compete with ITA and chose to write your software in C, they would be able to develop software twenty times faster than you. If you spent a year on a new feature, they'd be able to duplicate it in less than three weeks. Whereas if they spent just three months developing something new, it would be five years before you had it too.

And you know what? That's the best-case scenario. When you talk about code-size ratios, you're implicitly assuming that you can actually write the program in the weaker language. But in fact there are limits on what programmers can do. If you're trying to solve a hard problem with a language that's too low-level, you reach a point where there is just too much to keep in your head at once.

So when I say it would take ITA's imaginary competitor five years to duplicate something ITA could write in Lisp in three months, I mean five years if nothing goes wrong. In fact, the way things work in most companies, any development project that would take five years is likely never to get finished at all.

I admit this is an extreme case. ITA's hackers seem to be unusually smart, and C is a pretty low-level language. But in a competitive market, even a differential of two or three to one would be enough to guarantee that you'd always be behind.

A Recipe

This is the kind of possibility that the pointy-haired boss doesn't even want to think about. And so most of them don't. Because, you know, when it comes down to it, the pointy-haired boss doesn't mind if his company gets their ass kicked, so long as no one can prove it's his fault. The safest plan for him personally is to stick close to the center of the herd.

Within large organizations, the phrase used to describe this approach is "industry best practice." Its purpose is to shield the pointy-haired boss from responsibility: if he chooses something that is "industry best practice," and the company loses, he can't be blamed. He didn't choose, the industry did.

I believe this term was originally used to describe accounting methods and so on. What it means, roughly, is don't do anything weird. And in accounting that's probably a good idea. The terms "cutting-edge" and "accounting" do not sound good together. But when you import this criterion into decisions about technology, you start to get the wrong answers.

Technology often should be cutting-edge. In programming languages, as Erann Gat has pointed out, what "industry best practice" actually gets you is not the best, but merely the average. When a decision causes you to develop software at a fraction of the rate of more aggressive competitors, "best practice" is a misnomer.

So here we have two pieces of information that I think are very valuable. In fact, I know it from my own experience. Number 1, languages vary in power. Number 2, most managers deliberately ignore this. Between them, these two facts are literally a recipe for making money. ITA is an example of this recipe in action. If you want to win in a software business, just take on the hardest problem you can find, use the most powerful language you can get, and wait for your competitors' pointy-haired bosses to revert to the mean.

Appendix: Power

As an illustration of what I mean about the relative power of programming languages, consider the following problem. We want to write a function that generates accumulators-- a function that takes a number n, and returns a function that takes another number i and returns n incremented by i.

(That's incremented by , not plus. An accumulator has to accumulate.)

In Common Lisp this would be

(defun foo (n) (lambda (i) (incf n i)))

and in Perl 5,

sub foo { my ($n) = @_; sub {$n += shift} }

which has more elements than the Lisp version because you have to extract parameters manually in Perl.

In Smalltalk the code is slightly longer than in Lisp

foo: n |s| s := n. ^[:i| s := s+i. ]

because although in general lexical variables work, you can't do an assignment to a parameter, so you have to create a new variable s.

In Javascript the example is, again, slightly longer, because Javascript retains the distinction between statements and expressions, so you need explicit return statements to return values:

function foo(n) { return function (i) { return n += i } }

(To be fair, Perl also retains this distinction, but deals with it in typical Perl fashion by letting you omit returns.)

If you try to translate the Lisp/Perl/Smalltalk/Javascript code into Python you run into some limitations. Because Python doesn't fully support lexical variables, you have to create a data structure to hold the value of n. And although Python does have a function data type, there is no literal representation for one (unless the body is only a single expression) so you need to create a named function to return. This is what you end up with:

def foo(n): s = [n] def bar(i): s[0] += i return s[0] return bar

Python users might legitimately ask why they can't just write

def foo(n): return lambda i: return n += i

or even

def foo(n): lambda i: n += i

and my guess is that they probably will, one day. (But if they don't want to wait for Python to evolve the rest of the way into Lisp, they could always just...)

In OO languages, you can, to a limited extent, simulate a closure (a function that refers to variables defined in enclosing scopes) by defining a class with one method and a field to replace each variable from an enclosing scope. This makes the programmer do the kind of code analysis that would be done by the compiler in a language with full support for lexical scope, and it won't work if more than one function refers to the same variable, but it is enough in simple cases like this.

Python experts seem to agree that this is the preferred way to solve the problem in Python, writing either

def foo(n): class acc: def __init__(self, s): self.s = s def inc(self, i): self.s += i return self.s return acc(n).inc

or

class foo: def __init__(self, n): self.n = n def __call__(self, i): self.n += i return self.n

I include these because I wouldn't want Python advocates to say I was misrepresenting the language, but both seem to me more complex than the first version. You're doing the same thing, setting up a separate place to hold the accumulator; it's just a field in an object instead of the head of a list. And the use of these special, reserved field names, especially __call__, seems a bit of a hack.

In the rivalry between Perl and Python, the claim of the Python hackers seems to be that that Python is a more elegant alternative to Perl, but what this case shows is that power is the ultimate elegance: the Perl program is simpler (has fewer elements), even if the syntax is a bit uglier.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Essays»

Представляем Вашему вниманию похожие книги на «Essays» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Essays»

Обсуждение, отзывы о книге «Essays» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x