Paul Graham - Essays

Здесь есть возможность читать онлайн «Paul Graham - Essays» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Прочая околокомпьтерная литература, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Essays: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Essays»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Essays — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Essays», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

A more serious problem is the diffuseness of prefix notation. For expert hackers, that really is a problem. No one wants to write (aref a x y) when they could write a[x,y].

In this particular case there is a way to finesse our way out of the problem. If we treat data structures as if they were functions on indexes, we could write (a x y) instead, which is even shorter than the Perl form. Similar tricks may shorten other types of expressions.

We can get rid of (or make optional) a lot of parentheses by making indentation significant. That's how programmers read code anyway: when indentation says one thing and delimiters say another, we go by the indentation. Treating indentation as significant would eliminate this common source of bugs as well as making programs shorter.

Sometimes infix syntax is easier to read. This is especially true for math expressions. I've used Lisp my whole programming life and I still don't find prefix math expressions natural. And yet it is convenient, especially when you're generating code, to have operators that take any number of arguments. So if we do have infix syntax, it should probably be implemented as some kind of read-macro.

I don't think we should be religiously opposed to introducing syntax into Lisp, as long as it translates in a well-understood way into underlying s-expressions. There is already a good deal of syntax in Lisp. It's not necessarily bad to introduce more, as long as no one is forced to use it. In Common Lisp, some delimiters are reserved for the language, suggesting that at least some of the designers intended to have more syntax in the future.

One of the most egregiously unlispy pieces of syntax in Common Lisp occurs in format strings; format is a language in its own right, and that language is not Lisp. If there were a plan for introducing more syntax into Lisp, format specifiers might be able to be included in it. It would be a good thing if macros could generate format specifiers the way they generate any other kind of code.

An eminent Lisp hacker told me that his copy of CLTL falls open to the section format. Mine too. This probably indicates room for improvement. It may also mean that programs do a lot of I/O.

8 Efficiency

A good language, as everyone knows, should generate fast code. But in practice I don't think fast code comes primarily from things you do in the design of the language. As Knuth pointed out long ago, speed only matters in certain critical bottlenecks. And as many programmers have observed since, one is very often mistaken about where these bottlenecks are.

So, in practice, the way to get fast code is to have a very good profiler, rather than by, say, making the language strongly typed. You don't need to know the type of every argument in every call in the program. You do need to be able to declare the types of arguments in the bottlenecks. And even more, you need to be able to find out where the bottlenecks are.

One complaint people have had with Lisp is that it's hard to tell what's expensive. This might be true. It might also be inevitable, if you want to have a very abstract language. And in any case I think good profiling would go a long way toward fixing the problem: you'd soon learn what was expensive.

Part of the problem here is social. Language designers like to write fast compilers. That's how they measure their skill. They think of the profiler as an add-on, at best. But in practice a good profiler may do more to improve the speed of actual programs written in the language than a compiler that generates fast code. Here, again, language designers are somewhat out of touch with their users. They do a really good job of solving slightly the wrong problem.

It might be a good idea to have an active profiler-- to push performance data to the programmer instead of waiting for him to come asking for it. For example, the editor could display bottlenecks in red when the programmer edits the source code. Another approach would be to somehow represent what's happening in running programs. This would be an especially big win in server-based applications, where you have lots of running programs to look at. An active profiler could show graphically what's happening in memory as a program's running, or even make sounds that tell what's happening.

Sound is a good cue to problems. In one place I worked, we had a big board of dials showing what was happening to our web servers. The hands were moved by little servomotors that made a slight noise when they turned. I couldn't see the board from my desk, but I found that I could tell immediately, by the sound, when there was a problem with a server.

It might even be possible to write a profiler that would automatically detect inefficient algorithms. I would not be surprised if certain patterns of memory access turned out to be sure signs of bad algorithms. If there were a little guy running around inside the computer executing our programs, he would probably have as long and plaintive a tale to tell about his job as a federal government employee. I often have a feeling that I'm sending the processor on a lot of wild goose chases, but I've never had a good way to look at what it's doing.

A number of Lisps now compile into byte code, which is then executed by an interpreter. This is usually done to make the implementation easier to port, but it could be a useful language feature. It might be a good idea to make the byte code an official part of the language, and to allow programmers to use inline byte code in bottlenecks. Then such optimizations would be portable too.

The nature of speed, as perceived by the end-user, may be changing. With the rise of server-based applications, more and more programs may turn out to be i/o-bound. It will be worth making i/o fast. The language can help with straightforward measures like simple, fast, formatted output functions, and also with deep structural changes like caching and persistent objects.

Users are interested in response time. But another kind of efficiency will be increasingly important: the number of simultaneous users you can support per processor. Many of the interesting applications written in the near future will be server-based, and the number of users per server is the critical question for anyone hosting such applications. In the capital cost of a business offering a server-based application, this is the divisor.

For years, efficiency hasn't mattered much in most end-user applications. Developers have been able to assume that each user would have an increasingly powerful processor sitting on their desk. And by Parkinson's Law, software has expanded to use the resources available. That will change with server-based applications. In that world, the hardware and software will be supplied together. For companies that offer server-based applications, it will make a very big difference to the bottom line how many users they can support per server.

In some applications, the processor will be the limiting factor, and execution speed will be the most important thing to optimize. But often memory will be the limit; the number of simultaneous users will be determined by the amount of memory you need for each user's data. The language can help here too. Good support for threads will enable all the users to share a single heap. It may also help to have persistent objects and/or language level support for lazy loading.

9 Time

The last ingredient a popular language needs is time. No one wants to write programs in a language that might go away, as so many programming languages do. So most hackers will tend to wait until a language has been around for a couple years before even considering using it.

Inventors of wonderful new things are often surprised to discover this, but you need time to get any message through to people. A friend of mine rarely does anything the first time someone asks him. He knows that people sometimes ask for things that they turn out not to want. To avoid wasting his time, he waits till the third or fourth time he's asked to do something; by then, whoever's asking him may be fairly annoyed, but at least they probably really do want whatever they're asking for.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Essays»

Представляем Вашему вниманию похожие книги на «Essays» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Essays»

Обсуждение, отзывы о книге «Essays» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x