Автор: Родион Насакин
Должное внимание вопросам безопасности уделяется нечасто, но дело здесь вовсе не в безалаберности архитекторов, а в том, что универсальных инструментов прогнозирования поведения толпы раз-два и обчелся. Опыт расчетов движения людей у российских (советских) застройщиков довольно скромен (за исключением, может быть, составления планов эвакуации при пожаре, да и то научное обоснование этих планов вызывает сомнения). Отечественных исследований по моделированию динамики толпы тоже было немного.
По мере того как появлялись все более и более крупные общественные сооружения, вроде гипермаркетов, проблема обострялась. Корректно смоделировать систему передвижения людей в большом пространстве без использования новых теоретических наработок было практически невозможно. А между тем, помимо заботы о потребителе, моделирование людских потоков с последующим использованием результатов при проектировании зданий играет ключевую роль с точки зрения безопасности и организации эвакуации при стихийных бедствиях, авариях, пожарах и терактах.
Газодинамическая аналогия
Серьезно этот вопрос прорабатывал сотрудник физфака МГУ М. Е. Степанцов, который еще в 1997 году занялся созданием модели динамики толпы и опубликовал несколько статей по этой тематике. Его работа была поддержана Российским фондом фундаментальных исследований и ГНТП "Безопасность".
Особое внимание Степанцов уделял проблеме практически неизбежной паники среди людей в случае возникновения чрезвычайных ситуаций в общественном месте. Главной задачей исследователя было смоделировать ситуацию с беспорядочным движением большой неорганизованной группы людей (то есть толпы), чтобы выявить те элементы и особенности конструкций, которые могут спровоцировать давку или "пробку". Степанцов полагает, что помимо общего потока пассажиров в проектировании городских пешеходных коммуникаций стоит также учитывать данные детального мониторинга движения потоков на отдельных участках.
Наиболее уместным решением в данном случае является использование класса математических моделей, известных как "клеточные автоматы", которые активно применяются, например, в газодинамике. Степанцов считает, что моделирование ситуаций с активным участием людей на данном этапе научного прогресса практически невозможно, так как исследователю приходится иметь дело с критически большим количеством скрытых факторов. Однако по мере увеличения количества участвующих в модели людей роль рациональных и иррациональных факторов, описывающих поведение отдельного человека, снижается, и поведение группы может быть описано вероятностным образом, то есть спрогнозировано. Это характерная иллюстрация действия закона больших чисел. Даже если исследователь не учитывает причин, которые могут заставить индивидуума действовать нестандартным образом, его поведение вряд ли скажется на действиях общей группы.
Клеточные автоматы – дискретные системы, то есть параметры, описывающие пространство и время, принимают значения из конечного небольшого набора. Клеткой называется узел пространственной решетки, ближайшие ячейки называются соседями. Каждому узлу присваивается некоторый набор значений, описывающий его текущее состояние, которое может изменяться по заданным правилам в зависимости от состояния соседей.
В данном случае клеточный автомат имеет два состояния клетки (наличие/отсутствие в ней человека) и учитывает две составляющие движения: хаотичное и направленное. Интересно, что данные условия схожи с уже существующей моделью, описывающей диффузионные процессы (окрестность Марголуса). Степанцов модифицировал правила этой модели, добавив к диффузионной составляющей движения направленную и представив движение частицы (человека) как суперпозицию случайного и направленного перемещения.
Далее была программно реализована работа клеточного автомата и исследованы некоторые модельные задачи. Так, на рис. 1 отражена ситуация, в которой люди выбегают из узкого выхода. При этом измеряется временная зависимость плотности числа людей до сужения и после. В данном случае плотность в широкой части прохода выше, а значит, данный выход может спровоцировать затор. Этого не произошло при изменении конфигурации прохода (рис. 2). Таким образом, модель позволяла описывать возникновения эффекта пробки и "отрицательной вязкости" (более быстрое движение у границ прохода).
Читать дальше