Преимущество выполнения большей части обработки прерываний от устройств через DPC в том, что это разрешает любые блокируемые прерывания с приоритетами от «Device IRQL» до «DPC/dispatch» — пока не началась обработка DPC, имеющего более низкий приоритет. A за счет этого удается более оперативно (чем это могло бы быть в ином случае) обслуживать прерывания среднего приоритета. Вторая фаза ввода-вывода (обработка DPC) показана на рис. 9-12.
Завершение обработки запроса на ввод-вывод
После того как DPC-процедура драйвера выполнена, до завершения запроса на ввод-вывод остается проделать кое-какую оставшуюся работу. Третья стадия обработки ввода-вывода называется завершением ввода-вывода (I/O completion) и начинается с вызова драйвером функции IoСотрleteRequest для уведомления диспетчера ввода-вывода о том, что обработка запроса, указанного в IRP (и принадлежащих ему блоках стека), закончена. Действия, выполняемые на этом этапе, различны для разных операций ввода-вывода. Например, все сервисы ввода-вывода записывают результат операции в блок статуса ввода-вывода (I/O status block) — структуру данных, предоставляемую вызывающим потоком. Некоторые сервисы, выполняющие буферизованный ввод-вывод, требуют возврата данных вызывающему потоку через подсистему ввода-вывода.
B любом случае подсистема ввода-вывода должна копировать отдельные данные из системной памяти в виртуальное адресное пространство процесса, которому принадлежит вызывающий поток. Если IRP выполняется синхронно, это адресное пространство является текущим и доступно напрямую, но если IRP обрабатывается асинхронно, диспетчер ввода-вывода должен отложить завершение IRP до тех пор, пока у него не появится возможность обращаться к нужному адресному пространству. Чтобы получить доступ к виртуальному адресному пространству процесса, которому принадлежит вызывающий поток, диспетчер ввода-вывода должен передавать данные «в контексте вызывающего потока», т. е. при выполнении этого потока (иначе говоря, процесс этого потока должен быть текущим, а его адресное пространство — активным на процессоре). Эту задачу диспетчер ввода-вывода решает, ставя в очередь данному потоку APC режима ядра (рис. 9-13).
Как уже говорилось в главе 3, APC выполняется только в контексте определенного потока, a DPC — в контексте любого потока. Это означает, что DPC не затрагивает адресное пространство процесса пользовательского режима. Вспомните также, что приоритет программного прерывания у DPC выше, чем у APC
B следующий раз, когда поток начинает выполняться при низком IRQL, ему доставляется отложенный APC Ядро передает управление АРС-процедуpe диспетчера ввода-вывода, которая копирует данные (если они есть) и код возврата в адресное пространство процесса вызывающего потока, освобождает IRP, представляющий данную операцию ввода-вывода, и переводит описатель файла (и любое событие или порт завершения ввода-вывода, если таковой объект предоставлен вызывающим потоком) в свободное состояние. Теперь ввод-вывод считается завершенным. Вызывающий поток или любые другие потоки, ждущие на описателе файла (или иного объекта), выходят из состояния ожидания и переходят в состояние готовности к выполнению. Вторая фаза завершения ввода-вывода показана на рис. 9-14.
И последнее замечание о завершении ввода-вывода. Функции асинхронного ввода-вывода ReadFileEx и WriteFileEx принимают в качестве параметра APC пользовательского режима. Если поток передаст этот параметр, то на последнем этапе диспетчер ввода-вывода направит соответствующий APC в очередь данного потока. Эта функциональность позволяет вызывающему потоку указывать процедуру, которую нужно вызывать после завершения или отмены запроса ввода-вывода. Такие APC выполняются в контексте вызывающего потока и доставляются, только если поток переходит в состояние «тревожного» ожидания (как, например, при вызове Windows-функции SleepEx, WaitForSingleObjectEx или WaitForMultipleObjectsEx).
Синхронизация
Драйверы должны синхронизировать свое обращение к глобальным данным и регистрам устройств в силу двух причин.
Читать дальше
Конец ознакомительного отрывка
Купить книгу