В UNIX каждому файлу в соответствие ставится некий индекс, в котором содержатся описание размещения информации на физическом носителе, права доступа, владелец и другие данные. Каждый файл имеет только один индекс. Когда процесс обращается к файлу по имени, ядро возвращает индекс файла. То есть каждое имя является указателем.
Индексы хранятся в файловой системе, однако при работе с файлом ядро заносит их в таблицу индексов, которая находится в ОЗУ. Кроме таблицы индексов, ядро использует еще две информационные структуры: таблицу файлов и таблицу дескрипторов файла. Пользователь может получить доступ к файловым дескрипторам и раскрыть информацию.
Итак, основные компоненты файловой системы:
– Блок загрузки. Располагается в начале файловой системы и содержит программу начальной загрузки.
– Суперблок. Здесь обозначаются свойства файловой системы: размер, расположение свободного пространства, количество файлов и другая информация.
– Список индексов. Размер списка указывается администратором при генерации файловой системы.
– Информационные блоки. Содержат данные файлов, а также служебные данные. Информационный блок может принадлежать только одному файлу.
После того как загрузка ядра выполнена, нужно как-то создавать, завершать и следить за существующими процессами и нитями (здесь нить – это «процесс», выполняемый на общей виртуальной памяти). Этим занимается функция управления процессами и нитями. Ввиду мультипроцессорности *nix ядро обеспечивает разделение процессорного времени или процессоров, что создает эффект параллельности выполнения разных задач. Ядро – это невыгружаемый компонент, и поэтому процесс, выполняющийся в режиме ядра, продолжает свое выполнение до тех пор, пока не вернется в режим задачи либо пока не перейдет в состояние «сна». Благодаря невыгружаемости ядро обеспечивает целостность информационных структур и стабильность работы.
Кроме обозначенных подсистем, существуют также коммуникационные средства, которые отвечают за обеспечение обмена данными. Ну и замыкающей функцией является программный интерфейс, который делает возможным доступ к ядру из более высокого уровня (со стороны пользовательских процессов).
Горе от ума, или Проблемы «идеальной» архитектуры
Как видно из вышесказанного, архитектура ОС в целом и архитектура ядра в частности – это стройная, хорошо продуманная система взаимодействия компонентов. Однако несмотря на это любая *nix – уязвимая система. В том числе и на самом нижнем уровне – ядре. Одна из основных причин уязвимостей ядра – возраст ОС. С одной стороны, клоны этой операционной системы становятся популярнее день ото дня в течение 25 лет, и это уникальный случай! Кроме того, на протяжении этих лет наращиваются и возможности системы, что является большим плюсом. Однако качественные улучшения структуры не успевали (и не успевают) за ростом ее возможностей. И поэтому можно утверждать, что современные варианты UNIX структурированы не идеально. Рассмотрим основные типы уязвимостей.
Переполнение буфера (buffer overflow)
Одна из самых распространенных уязвимостей программного обеспечения и ОС в частности. Эту уязвимость вызывает небольшая ошибка, позволяющая, однако, творить чудеса. Ошибка переполнения буфера случается, если в программе происходит копирование данных без проверки свободного места в пункте назначения (буфере). Когда данных слишком много, происходит переполнение и информация попадает за границы буфера. Умелое использование этого факта позволяет запускать произвольный код с правами переполненного приложения (то есть вполне может быть, что с правами администратора). Существует огромное количество такого рода уязвимостей. Главная причина уязвимости – использование некоторых функций стандартной библиотеки языка С, не проверяющих размеры своих аргументов (например strcpy, strcat, gets или sprintf), а *nix-системы (в том числе и большая часть ядра), как ты помнишь, почти целиком написаны на C. Актуальность этой уязвимости доказывает хотя бы последний найденный баг. В UNIX 9.x найдены множественные переполнения буфера в функциях strcpy() и p_stcopy(), позволяющие локальному пользователю переписывать в стеке значение регистра eip, что может привести к выполнению произвольного кода c root-правами (см. www.securitylab.ru).
Уязвимость состояния операции
Данная проблема характерна как для *nix, так и для Windows. В никсах эта дырка обнаруживается в ядре и не имеет такого широкого распространения, как переполнение буфера. Правильно используя данную уязвимость, можно изменять файлы в системе. С первого взгляда кажется, что такая возможность не представляет особой ценности, однако подобным образом могут быть получены повышенные привилегии при помощи модификации критических файлов типа /etc/passwd и др.
Читать дальше