Этот пример иллюстрирует некоторые моменты и соглашения, касающиеся программирования, которые будут важны для нас на протяжении этой и последующих глав.
• Объект CRITICAL_SECTION является частью объекта (блока сообщения), защиту которого он обеспечивает.
• Каждый доступ к сообщению осуществляется на критическом участке кода.
• Типом переменных, доступ к которым осуществляется разными потоками, является volatile.
• Использование обработчиков завершения гарантирует, что объекты CS будут обязательно освобождены. Хотя в данном случае эта методика и не является для нас существенной, она дополнительно гарантирует, что вызов функции LeaveCriticalSection не будет случайно опущен впоследствии при изменении кода программы. Имейте также в виду, что обработчик завершения ограничен использованием средств С, и его не следует использовать совместно с C++.
• Функции MessageFill и MessageDisplay вызываются лишь на критических участках кода и используют для нужд своих вычислений не глобальную, а локальную память. Кстати, обе они будут применяться и в последующих примерах, но их листинги больше приводиться не будут.
• Не существует удобного способа, при помощи которого поток производителя мог бы известить поток потребителя о наличии нового сообщения, и поэтому поток потребителя должен просто ожидать, пока не будет установлен флаг готовности, который используется для индикации появления нового сообщения. Устранить этот недостаток нам помогут объекты событий ядра.
• Одним из инвариантных свойств, которые гарантируются этой программой, является то, что контрольная сумма блока сообщения будет всегда корректной вне критических участков кода. Другим инвариантным свойством является следующее:
0 <= nLost + nCons <= sequence
Об этом важном свойстве далее еще будет идти речь.
• О необходимости прекращения передачи поток производителя узнает лишь после проверки флага, устанавливаемого в блоке сообщения потока потребителя. Поскольку потоки не могут обмениваться между собой никакими сигналами, а вызов функции TerminateThread чреват нежелательными побочными эффектами, эта методика является простейшим способом остановки другого потока. Разумеется, чтобы эта методика была эффективной, работа потоков должна быть скоординированной. В то же время, подобное решение требует, чтобы поток не блокировался, иначе он не сможет тестировать флаг; способы решения проблемы блокированных потоков обсуждаются в главе 10.
Объекты CRITICAL_SECTION предоставляют в наше распоряжение мощный механизм синхронизации, но, тем не менее, они не в состоянии обеспечить всю полноту необходимых функциональных возможностей. О невозможности отправки сигналов одним потоком другому уже говорилось, кроме того, эти объекты не позволяют воспользоваться конечными интервалами ожидания (time-out). Объекты синхронизации ядра Windows позволяют снизить остроту не только этих, но и других ограничений.
Объект взаимного исключения (mutual exception), или мьютекс (mutex), обеспечивает более универсальную функциональность по сравнению с объектом CRITICAL_SECTION. Поскольку мьютексы могут иметь имена и дескрипторы, их можно использовать также для синхронизации потоков, принадлежащих различным процессам. Так, два процесса, разделяющие общую память посредством отображения файлов, могут использовать мьютексы для синхронизации доступа к разделяемым областям памяти.
Объекты мьютексов аналогичны объектам CS, однако, дополнительно к возможности их совместного использования различными процессами, они допускают конечные периоды ожидания, а мьютексы, покинутые (abandoned) завершающимся процессом, переходят в сигнальное состояние. [29] Выбирая необходимый тип объекта, руководствуйтесь следующим правилом: если упоминавшиеся ограничения приемлемы — используйте объекты CRITICAL_SECTION, если же имеется несколько процессов или требуются возможности мьютексов — применяйте мьютексы.
Поток приобретает права владения мьютексом (или блокирует (block) мьютекс) путем вызова функции ожидания (WaitForSingleObject или WaitForMultipleObjects) по отношению к дескриптору мьютекса и уступает эти права посредством вызова функции ReleaseMutex.
Как всегда, необходимо тщательно следить за тем, чтобы потоки своевременно освобождали ресурсы, в которых они больше не нуждаются. Поток может завладевать одним и тем же ресурсом несколько раз, и при этом не будет блокироваться даже в тех случаях, когда уже владеет данным ресурсом. В конечном счете, поток должен освободить мьютекс столько раз, сколько она его захватывала. Такая возможность рекурсивного захвата ресурсов, существующая и в случае объектов CS, может оказаться полезной для ограничения доступа к рекурсивным функциям, а также в приложениях, реализующих вложенные транзакции (nested transactions).
Читать дальше