Наше приложение вместе с функциями, используемыми для операций ввода и вывода, изображено на рис. 10.1.
Рис. 10.1. Простое потоковое приложение SCTP с архитектурой клиент-сервер
Две стрелки между клиентом и сервером обозначают два однонаправленных потока (ассоциация в целом является полностью двусторонней). Функции fgets
и fputs
входят в стандартную библиотеку ввода-вывода. Мы не пользуемся функциями writen
и readline
из раздела 3.9, потому что в них нет необходимости. Вместо них мы вызываем sctp_sendmsg
и sctp_recvmsg
из разделов 9.9 и 9.10 соответственно.
Сервер в нашем примере будет относиться к типу «один-ко-многим». Этот вариант был выбран нами по одной важной причине. Примеры из главы 5 могут быть переделаны под SCTP внесением крайне незначительных изменений: достаточно изменить вызов socket, указав в качестве третьего аргумента IPPROTO_SCTP
вместо IPPROTO_TCP
. Однако приложение, полученное таким образом, не использовало бы дополнительные возможности, предоставляемые SCTP, за исключением поддержки многоинтерфейсных узлов. Написав сервер типа «один-ко-многим», мы смогли показать все достоинства SCTP.
10.2. Потоковый эхо-сервер SCTP типа «один-ко-многим»: функция main
Наши клиент и сервер SCTP вызывают функции в последовательности, представленной на рис. 9.2. Код последовательного сервера представлен в листинге 10.1 [1] Все исходные коды программ, опубликованные в этой книге, вы можете найти по адресу http://www.piter.com.
.
Листинг 10.1. Потоковый эхо-сервер SCTP
//sctp/sctpserv01.c
1 #include "unp.h"
2 int
3 main(int argc, char **argv)
4 {
5 int sock_fd, msg_flags;
6 char readbuf[BUFFSIZE];
7 struct sockaddr_in servaddr, cliaddr;
8 struct sctp_sndrcvinfo sri;
9 struct sctp_event_subscribe evnts;
10 int stream_increment=1;
11 socklen_t len;
12 size_t rd_sz;
13 if (argc == 2)
14 stream_increment = atoi(argv[1]);
15 sock_fd = Socket(AF_INET, SOCK_SEQPACKET, IPPROTO_SCTP);
16 bzero(&servaddr, sizeof(servaddr));
17 servaddr.sin_family = AF_INET;
18 servaddr.sin_addr.s_addr = htonl(INADDR_ANY);
19 servaddr.sin_port = htons(SERV_PORT);
20 Bind(sock_fd, (SA*)&servaddr, sizeof(servaddr));
21 bzero(&evnts, sizeof(evnts));
22 evnts.sctp_data_io_event = 1;
23 Setsockopt(sock_fd, IPPROTO_SCTP, SCTP_EVENTS, &evnts, sizeof(evnts));
24 Listen(sock_fd, LISTENQ);
25 for (;;) {
26 len = sizeof(struct sockaddr_in);
27 rd_sz = Sctp_recvmsg(sock_fd, readbuf, sizeof(readbuf),
28 (SA*)&cliaddr, &len, &sri, &msg_flags);
29 if (stream_increment) {
30 sri.sinfo_stream++;
31 if (sri.sinfo_stream >=
32 sctp_get_no_strms(sock_fd, (SA*)&cliaddr, len))
33 sri.sinfo_stream = 0;
34 }
35 Sctp_sendmsg(sock_fd, readbuf, rd_sz,
36 (SA*)&cliaddr, len,
37 sri.sinfo_ppid,
38 sri.sinfo_flags, sri.sinfo_stream, 0, 0);
39 }
40 }
Настройка приращения номера потока
13-14
По умолчанию наш сервер отвечает клиенту через поток, номер которого на единицу больше номера потока, по которому было получено сообщение. Если приложению в строке вызова передается целочисленный аргумент, он интерпретируется как значение флага stream_increment
, с помощью которого приращение номера потока можно отключить. Мы воспользуемся этим параметром командной строки, когда будем говорить о блокировании в разделе 10.5.
Создание сокета SCTP
15
Создается сокет SCTP типа «один-ко-многим».
Связывание с адресом
16-20
Структура адреса сокета Интернета заполняется универсальным адресом ( INADDR_ANY
) и номером заранее известного порта сервера SERV_PORT
. Связывание с универсальным адресом означает, что конечная точка SCTP будет использовать все доступные локальные адреса для всех создаваемых ассоциаций. Для многоинтерфейсных узлов это означает, что удаленная конечная точка сможет устанавливать ассоциации и передавать пакеты на любой локальный интерфейс. Выбор номера порта SCTP основывался на рис. 2.10. Обратите внимание, что ход рассуждений для сервера тот же, что и в одном из предшествовавших примеров в разделе 5.2.
Подписка на уведомления
21-23
Сервер изменяет параметры подписки на уведомления для сокета SCTP. Сервер подписывается только на событие sctp_data_io_event
, что позволяет ему получать структуру sctp_sndrcvinfo
. По ее содержимому сервер сможет определять номер потока полученного сообщения.
Разрешение установки входящих ассоциаций
24
Сервер разрешает устанавливать входящие ассоциации, вызывая функцию listen
. Затем управление передается главному циклу.
Читать дальше
Конец ознакомительного отрывка
Купить книгу