Роберт Лав - Разработка ядра Linux

Здесь есть возможность читать онлайн «Роберт Лав - Разработка ядра Linux» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2006, ISBN: 2006, Издательство: Издательский дом Вильямс, Жанр: ОС и Сети, Программирование, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Разработка ядра Linux: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Разработка ядра Linux»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

В книге детально рассмотрены основные подсистемы и функции ядер Linux серии 2.6, включая особенности построения, реализации и соответствующие программны интерфейсы. Рассмотренные вопросы включают: планирование выполнения процессов, управление временем и таймеры ядра, интерфейс системных вызовов, особенности адресации и управления памятью, страничный кэш, подсистему VFS, механизмы синхронизации, проблемы переносимости и особенности отладки. Автор книги является разработчиком основных подсистем ядра Linux. Ядро рассматривается как с теоретической, так и с прикладной точек зрения, что может привлечь читателей различными интересами и потребностями.
Книга может быть рекомендована как начинающим, так и опытным разработчикам программного обеспечения, а также в качестве дополнительных учебных материалов.

Разработка ядра Linux — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Разработка ядра Linux», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

порожденных текущим процессом */

}

Дескриптор процесса init— это статически выделенная структура данных с именем init_task. Хороший пример использования связей между всеми процессами — это приведенный ниже код, который всегда выполняется успешно.

struct task_struct *task;

for (task = current; task != $init_task; task = task->parent)

;

/* переменная task теперь указывает на процесс init */

Конечно, проходя по иерархии процессов, можно перейти от одного процесса системы к другому. Иногда, однако, желательно выполнить цикл по всем процессам системы. Такая задача решается очень просто, так как список задач — это двухсвязный список. Для того чтобы получить указатель на следующее задание из этого списка, имея действительный указатель на дескриптор какого-либо процесса, можно использовать показанный ниже код:

list_entry(task->tasks.next, struct task_struct, tasks);

Получение указателя на предыдущее задание работает аналогично.

list_entry(task->tasks.prev, struct task_struct, tasks);

Дна указанных выше выражения доступны также в виде макросов next_task(task)(получить следующую задачу), prev_task(task)(получить предыдущую задачу). Наконец, макрос for_each_process(task)позволяет выполнить цикл по всему списку задач. На каждом шаге цикла переменная taskуказывает на следующую задачу из списка:

struct task_struct *task;

for_each_process(task) {

/* просто печатается имя команды и идентификатор PID

для каждой задачи */

printk("%s[%d]\n", task->comm, task->pid);

}

Следует заметить, что организация цикла по всем задачам системы, в которой выполняется много процессов, может быть достаточно дорогостоящей операцией. Для применения такого кода должны быть веские причины (и отсутствовать другие альтернативы).

Создание нового процесса

В операционной системе Unix создание процессов происходит уникальным образом. В большинстве операционных систем для создания процессов используется метод порождения процессов ( spawn ). При этом создается новый процесс в новом адресном пространстве, в которое считывается исполняемый файл, и после этого начинается исполнение процесса. В ОС Unix используется другой подход, а именно разбиение указанных выше операций на две функции: fork()и exec() [15] Под exec() будем понимать любую функцию из семейства exec*() . В ядре реализован системный вызов execve() , на основе которого реализованы библиотечные функции execlp() , execle() , execv() и execvp() . .

В начале с помощью функции fork()создается порожденный процесс, который является копией текущего задания. Порожденный процесс отличается от родительского только значением идентификатора PID(который является уникальным в системе), значением параметра PPID(идентификатор PIDродительского процесса, который устанавливается в значение PIDпорождающего процесса), некоторыми ресурсами, такими как ожидающие на обработку сигналы (которые не наследуются), а также статистикой использования ресурсов. Вторая функция — exec()— загружает исполняемый файл в адресное пространство процесса и начинает исполнять его. Комбинация функций fork()и exec()аналогична той одной функции создания процесса, которую предоставляет большинство операционных систем.

Копирование при записи

Традиционно при выполнении функции fork()делался дубликат всех ресурсов родительского процесса и передавался порожденному. Такой подход достаточно наивный и неэффективный. В операционной системе Linux вызов fork()реализован с использованием механизма копирования при записи ( copy-on-write ) страниц памяти. Технология копирования при записи (copy-on-write, COW) позволяет отложить или вообще предотвратить копирование данных. Вместо создания дубликата адресного пространства процесса родительский и порожденный процессы могут совместно использовать одну и ту же копию адресного пространства. Однако при этом данные помечаются особым образом, и если вдруг один из процессов начинает изменять данные, то создается дубликат данных, и каждый процесс получает уникальную копию данных. Следовательно, дубликаты ресурсов создаются только тогда, когда в эти ресурсы осуществляется запись, а до того момента они используются совместно в режиме только для чтения (read-only). Такая техника позволяет задержать копирование каждой страницы памяти до того момента, пока в эту страницу памяти не будет осуществляться запись. В случае, если в страницы памяти никогда не делается запись, как, например, при вызове функции exec()сразу после вызова fork(), то эти страницы никогда и не копируются. Единственные накладные расходы, которые вносит вызов функции fork(), — это копирование таблиц страниц родительского процесса и создание дескриптора порожденного процесса. Данная оптимизация предотвращает ненужное копирование большого количества данных (размер адресного пространства часто может быть более 10 Мбайт), так как процесс после разветвления в большинстве случаев сразу же начинает выполнять новый исполняемый образ. Эта оптимизация очень важна, потому чти идеология операционной системы Unix предусматривает быстрое выполнение процессов.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Разработка ядра Linux»

Представляем Вашему вниманию похожие книги на «Разработка ядра Linux» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Разработка ядра Linux»

Обсуждение, отзывы о книге «Разработка ядра Linux» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x